CT にて3 cm を超える肺病変で肺癌を疑う場合には,良悪性の鑑別診断のため必ず確定診断を行う。3 cm 以下の結節では確定診断が不要な良性病変である可能性もあり,良悪性の鑑別を行うために質的画像診断が施行される。質的画像診断として,まず,肺結節部の高分解能CT(薄層CT)を行う。高分解能CT は,病変部を拡大し,高周波強調で再構成した2 mm 以下の薄いスライス厚のCT 画像である。多列検出器型CT 装置が普及した現在では,通常,撮影した画像から再度撮影することなく,当該生データを用いて容易に高分解能CT が再構成できる。高分解能CT では病理像に対応した特徴的な画像所見がみられ,肺結節の良悪性鑑別に有用な情報を得ることが可能であり,結節の周囲の既存構造も明瞭に描出されることから,結節周囲の血管,小葉間隔壁,胸膜などとの関係も観察することができる4)~7)。充実型結節において,均一あるいは中心部の粗大石灰化,層状の石灰化を伴う場合や,確実な脂肪濃度を認めた場合には,炎症後の肉芽腫や過誤腫などの良性結節と診断できる8)。一方,結節にスピキュラやノッチ,胸膜陥入,辺縁部の境界明瞭なすりガラス部分が認められた場合,あるいは不整な壁を有する空洞性結節の場合には,肺癌を疑って確定診断を行う8)。また,胸膜下の境界明瞭な小さな充実型結節が,perifissural nodule と称される一連の性状を呈していれば,肺内リンパ節などの良性結節と診断可能である7)。
Wakai K, Inoue M, Mizoue T, et al. Tobacco smoking and lung cancer risk: an evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol. 2006; 36(5): 309-24.
2)
The International Agency for Research on Cancer. Tobacco Control: Reversal of risk after quitting smoking IARC Handbook of cancer prevention, Volume 11. World Health Organization. 2007.
3)
Schottenfeld D, Fraumeni JF Jr. Cancer Epidemiology and prevention, 3rd Ed. Oxford University Press. 2006; 638-58.
4)
Li F, Sone S, Abe H, et al. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology. 2004; 233(3): 793-8.
5)
Lee SM, Park CM, Goo JM, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology. 2013; 268(1): 265-73.
6)
Lee KH, Goo JM, Park SJ, et al. Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. J Thorac Oncol. 2014; 9(1): 74-82.
7)
de Hoop B, van Ginneken B, Gietema H, et al. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology. 2012; 265(2): 611-6.
8)
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017; 284(1): 228-43.
9)
Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014; 311(19): 1998-2006.
Quekel LG, Kessels AG, Goei R, et al. Miss rate of lung cancer on the chest radiograph in clinical practice. Chest 1999; 115(3): 720-4.
2)
Austin JH, Romney BM, Goldsmith LS. Missed bronchogenic carcinoma: radiographic findings in 27 patients with a potentially resectable lesion evident in retrospect. Radiology. 1992; 182(1): 115-22.
3)
Quekel LG, Kessels AG, Goei R, et al. Detection of lung cancer on the chest radiograph: a study on observer performance. Eur J Radiol. 2001; 39(2): 111-6.
4)
Altorki N, Kent M, Pasmantier M. Detection of early-stage lung cancer: computed tomographic scan or chest radiograph?. J Thorac Cardiovasc Surg. 2001; 121(6): 1053-7.
5)
Diederich S, Semik M, Lentschig MG, et al. Helical CT of pulmonary nodules in patients with extrathoracic malignancy:CT-surgical correlation. AJR Am J Roentgenol. 1999; 172(2): 353-60.
6)
Gurney JW. Missed lung cancer at CT: imaging findings in nine patients. Radiology. 1996; 199(1): 117-22.
7)
White CS, Romney BM, Mason AC, et al. Primary carcinoma of the lung overlooked at CT: analysis of findings in 14 patients. Radiology. 1996; 199(1): 109-15.
8)
Sing A, Freudenberg N, Kortsik C, et al. Comparison of the sensitivity of sputum and brush cytology in the diagnosis of lung carcinomas. Acta Cytol. 1997; 41(2): 399-408.
9)
Bechtel JJ, Petty TL, Saccomanno G. Five year survival and later outcome of patients with X-ray occult lung cancer detected by sputum cytology. Lung Cancer. 2000; 30(1): 1-7.
10)
Frost JK, Ball WC Jr, Levin ML, et al. Early lung cancer detection: results of the initial(prevalence)radiologic and cytologic screening in the Johns Hopkins study. Am Rev Resp Dis. 1984; 130(4): 549-54.
11)
Melamed MR, Flehinger BJ, Zaman MB, et al. Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York. Chest. 1984; 86(1): 44-53.
12)
Doria-Rose VP, Marcus PM, Szabo E, et al. Randomized controlled trials of the efficacy of lung cancer screening by sputum cytology revisited: a combined mortality analysis from the Johns Hopkins Lung Project and the Memorial Sloan-Kettering Lung Study. Cancer. 2009; 115(21): 5007-17.
Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001; 285(7): 914-24.
15)
Chien CR, Liang JA, Chen JH, et al.[(18)F]Fluorodeoxyglucose-positron emission tomography screening for lung cancer: a systematic review and meta-analysis. Cancer Imaging. 2013; 13(4): 458-65.
16)
Grogan EL, Deppen SA, Ballman KV, et al. Accuracy of fluorodeoxyglucose-positron emission tomography within the clinical practice of the American College of Surgeons Oncology Group Z4031 trial to diagnose clinical stage Ⅰ non-small cell lung cancer. Ann Thorac Surg. 2014; 97(4): 1142-8.
17)
Minamimoto R, Senda M, Jinnouchi S, et al. Detection of lung cancer by FDG-PET cancer screening program: a nationwide Japanese survey. Anticancer Res. 2014; 34(1): 183-9.
18)
Cronin P, Dwamena BA, Kelly AM, et al. Solitary pulmonary nodules and masses: a meta-analysis of the diagnostic utility of alternative imaging tests. Eur Radiol. 2008; 18(9): 1840-56.
19)
Cronin P, Dwamena BA, Kelly AM, et al. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008; 246(3): 772-82.
20)
Bates SE. Clinical applications of serum tumor markers. Ann Intern Med. 1991; 115(8): 623-38.
21)
Rastel D, Ramaioli A, Cornillie F, et al. CYFRA 21-1, a sensitive and specific new tumour marker for squamous cell lung cancer. Report of the first European multicentre evaluation. CYFRA 21-1 Multicentre Study Group. Eur J Cancer. 1994; 30A(5): 601-6.
22)
Pujol JL, Grenier J, Parrat E, et al. Cytokeratins as serum markers in lung cancer: a comparison of CYFRA 21-1 and TPS. Am J Respir Crit Care Med. 1996; 154(3 Pt 1): 725-33.
23)
Bombardieri E, Seregni E, Bogni A, et al. Evaluation of cytokeratin 19 serum fragments(CYFRA 21-1)in patients with lung cancer: results of a multicenter trial. Int J Biol Markers. 1994; 9(2): 89-95.
24)
Stieber P, Dienemann H, Schalhorn A, et al. Pro-gastrin-releasing peptide(ProGRP)–a useful marker in small cell lung carcinomas. Anticancer Res. 1999; 19(4A): 2673-8.
25)
Ebert W, Hoppe M, Muley T, et al. Monitoring of therapy in inoperable lung cancer patients by measurement of CYFRA 21-1, TPA-TP CEA, and NSE. Anticancer Res. 1997; 17(4B): 2875-8.
26)
Jørgensen LG, Osterlind K, Genollá J, et al. Serum neuron-specific enolase(S-NSE)and the prognosis in small-cell lung cancer(SCLC): a combined multivariable analysis on data from nine centres. Br J Cancer. 1996; 74(3): 463-7.
27)
Salgia R, Harpole D, Herndon JE 2nd, et al. Role of serum tumor markers CA 125 and CEA in non-small cell lung cancer. Anticancer Res. 2001; 21(2B): 1241-6.
28)
Satoh H, Ishikawa H, Kamma H, et al. Serum sialyl lewis X-i antigen levels in non-small cell lung cancer: correlation with distant metastasis and survival. Clin Cancer Res. 1997; 3(4): 495-9.
29)
Korkmaz ET, Koksal D, Aksu F, et al. Triple test with tumor markers CYFRA 21.1, HE4, and ProGRP might contribute to diagnosis and subtyping of lung cancer. Clin Biochem. 2018; 58: 15-9.
30)
Jia H, Zhang L, Wang B. The value of combination analysis of tumor biomarkers for early differentiating diagnosis of lung cancer and pulmonary tuberculosis. Ann Clin Lab Sci. 2019; 49(5): 645-9.
a. 悪性の結節は高い造影効果をもつという仮説のもとに,非石灰化肺結節の良悪性の鑑別診断を,CT でヨード造影剤投与後の造影効果から判定する方法がある。多施設研究では,15 HU を超える造影効果を悪性とした場合の感度は98%,特異度は58%という結果が得られた1)。したがって,造影CT で造影効果がほとんどみられない場合(15 HU 以下)には,良性であることが強く示唆されるが,造影された場合には質的診断は困難である1)。多時相撮像(dynamic study)を行う報告では,良性結節を除外診断できる可能性も指摘されている2)3)。しかし,造影CT の正診度や感度,特異度についてエビデンスの質の高い研究はない。
b. MRI については,造影剤を用いた多時相撮像や拡散強調像(DWI:diffusion-weighted magnetic resonance imaging)を用いた方法が孤立性肺結節の良悪性の鑑別診断や精査の必要性の判断に有用との報告がある4)5)。MRI も造影CT やFDG-PET/CT と遜色ない成績も報告されている6)。しかし,それらの報告のエビデンスの強さはC である。研究結果として有用性が高く被曝がない利点はあるが,本邦では肺病変の検査として行っている施設が限られている点も考慮し,総合的評価では行うことを弱く推奨(2 で推奨)できると判断した。下記に,推奨度決定のために行われた投票結果を記載する。
c. FDG-PET やFDG-PET/CT は,多くの研究によって,CT より良悪性の鑑別診断に対して良好な成績が報告されている7)~9)。多時相でstandardized uptake value(SUV)を計測する方法(dual time point PET/CT)の報告がなされ10),良性結節を除外診断できる可能性も指摘されている。ただし,FDG-PET/CT の定量評価として用いられているSUV に関しては,比較定量性に問題があるとする報告11)も多いので,日常診療で標準的な指標として勧められない。また,1 cm 以下の結節のデータは少なく,診断能が確立していないこと,定型カルチノイドなどの低悪性度腫瘍や上皮内腺癌が偽陰性になる場合が多く,逆に肉芽腫の一部は偽陽性になるため,その診断に注意が必要である12)13)。PET-CT についての報告もエビデンスの強さはC である。また総合的評価では,その高い正診率や感度,特異度,低侵襲性から,コストは高いが良悪性の鑑別診断に使用することを強く推奨(1 で推奨)できると判断した。下記に,推奨度決定のために行われた投票結果を記載する。
本邦では,日本CT 検診学会が「低線量CT による肺がん検診の肺結節の判定基準と経過観察の考え方」を提案しており15),その中では,高分解能CT で結節を充実型結節と部分充実型あるいはすりガラス型結節に分けて,10 mm 未満の小さい充実型結節や15 mm 未満の小さい部分充実型結節,すりガラス型結節で充実部が5 mm 以下の結節では,決められた間隔で高分解能CT による経過観察を行い,増大の有無に応じて経過観察や観察終了,確定診断への移行を勧めている。
欧米でも,Fleishner Society が,高分解能CT での結節の性状によって充実型結節とすりガラス部分を伴う結節に分けて,大きさと肺癌の危険性の程度に応じて,CT での経過観察やFDG-PET/CT を用いた検査法,確定診断を組み合わせた経過観察の方法をガイドラインとして提案している16)。
Swensen SJ, Viggiano RW, Midthun DE, et al. Lung nodule enhancement at CT: multicenter study. Radiology. 2000; 214(1): 73-80.
2)
Jeong YJ, Lee KS, Jeong SY, et al. Solitary pulmonary nodule: characterization with combined wash-in and wash-out features at dynamic multi-detector row CT. Radiology. 2005; 237(2): 675-83.
3)
Shan F, Zhang Z, Xing W, et al. Differentiation between malignant and benign solitary pulmonary nodules: use of volume first-pass perfusion and combined with routine computed tomography. Eur J Radiol. 2012; 81(11): 3598-605.
4)
Kono R, Fujimoto K, Terasaki H, et al. Dynamic MRI of solitary pulmonary nodules: comparison of enhancement patterns of malignant and benign small peripheral lung lesions. AJR Am J Roentgenol. 2007; 188(1): 26-36.
5)
Li B, Li Q, Chen C, et al. A systematic review and meta-analysis of the accuracy of diffusion-weighted MRI in the detection of malignant pulmonary nodules and masses. Acad Radiol. 2014; 21(1): 21-9.
6)
Cronin P, Dwamena BA, Kelly AM, et al. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008; 246(3): 772-82.
7)
Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001; 285(7): 914-24.
8)
Yi CA, Lee KS, Kim BT, et al. Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med. 2006; 47(3): 443-50.
9)
Sim YT, Goh YG, Dempsey MF, et al. PET-CT evaluation of solitary pulmonary nodules: correlation with maximum standardized uptake value and pathology. Lung. 2013; 191(6): 625-32.
10)
Zhang L, Wang Y, Lei J, et al. Dual time point 18FDG-PET/CT versus single time point 18FDG-PET/CT for the differential diagnosis of pulmonary nodules: a meta-analysis. Acta Radiol. 2013; 54(7): 770-7.
11)
Gould MK, Sanders GD, Barnett PG, et al. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med. 2003; 138(9): 724-35.
12)
Detterbeck FC, Falen S, Rivera MP, et al. Seeking a home for a PET, part 1: Defining the appropriate place for positron emission tomography imaging in the diagnosis of pulmonary nodules or masses. Chest. 2004; 125(6):2294-9.
13)
Deppen SA, Blume JD, Kensinger CD, et al. Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA. 2014; 312(12): 1227-36.
14)
van Klaveren RJ, Oudkerk M, Prokop M, et al. Management of lung nodules detected by volume CT scanning. N Engl J Med. 2009; 361(23): 2221-9.
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017; 284(1): 228-43.
17)
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013; 369(10): 910-9.
18)
Yankelevitz DF, Reeves AP, Kostis WJ, et al. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology. 2000; 217(1): 251-6.
19)
Ashraf H, Dirksen A, Loft A, et al. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning. Thorax. 2011; 66(4): 315-9.
中枢気道の前浸潤性病変や早期癌が疑われる症例に,自家蛍光(autofluoresense)観察/狭帯域光観察(narrow band imaging)は勧められるか?
エビデンスの強さC
a. 中枢気道の前浸潤性病変や早期癌が疑われる症例に,白色光による気管支鏡検査に自家蛍光観察を併用するよう提案する。
〔推奨の強さ:2,合意率:100%〕
エビデンスの強さC
b. 中枢気道の前浸潤性病変や早期癌が疑われる症例に,白色光による気管支鏡検査に狭帯域光観察を併用するよう提案する。
〔推奨の強さ:2,合意率:89%〕
解説
a. 肺癌診断の内視鏡診断に以下の技術,手技が導入されている。自家蛍光観察は,白色光観察と比較し,前浸潤性病変(扁平上皮異形成,上皮内癌)に対する検出感度が上昇すると報告されている。白色光観察と自家蛍光観察との比較のメタアナリシスでは,前浸潤性病変(扁平上皮異形成,上皮内癌)に対する検出感度がそれぞれ50%と88%で,自家蛍光観察により検出感度が上昇すると報告されている3)。一方,自家蛍光観察の特異度は,白色光単独に比べて低く,メタアナリシスではそれぞれ83%,50%と報告されている。また白色光と,自家蛍光内視鏡併用に関するメタアナリシスでは白色光観察の感度が46%に対して,自家蛍光観察併用の感度は85%である。一方,自家蛍光観察併用の特異度は,白色光単独に比べて低く,メタアナリシスではそれぞれ91%,71%と報告されている3)。
Rivera MP, Mehta AC, Wahidi MM. Establishing the Diagnosis of Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2013; 143(5 Suppl): e142S-65S.
2)
Asano F, Aoe M, Ohsaki Y, et al. Deaths and complications associated with respiratory endoscopy: a survey by the Japan Society for Respiratory Endoscopy in 2010. Respirology. 2012; 17(3): 478-85.
3)
Zhang J, Wu J, Yang Y, et al. White light, autofluorescence and narrow-band imaging bronchoscopy for diagnosing airway pre-cancerous and early cancer lesions: a systematic review and meta-analysis. J Thorac Dis. 2016; 8(11): 3205-16.
4)
Mondoni M, Sotgiu G, Bonifazi M, et al. Transbronchial needle aspiration in peripheral pulmonary lesions: a systematic review and meta-analysis. Eur Respir J. 2016; 48(1): 196-204.
5)
Kuijvenhoven JC, Leoncini F, Crombag LC, et al. Endobronchial ultrasound for the diagnosis of centrally located lung tumors: a systematic review and meta-analysis. Respiration. 2020; 99(5): 441-50. Epub 2019 Nov 15.
6)
Tomiyama N, Yasuhara Y, Nakajima Y, et al. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol. 2006; 59(1): 60-4.
7)
Paone G, Nicastri E, Lucantoni G, et al. Endobronchial ultrasound-driven biopsy in the diagnosis of peripheral lung lesions. Chest. 2005; 128(5): 3551-7.
8)
Sánchez-Font A, Giralt L, Vollmer I, et al. Endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions. A controlled study with fluoroscopy. Arch Bronconeumol. 2014; 50(5): 166-71.
9)
Bo L, Li C, Pan L, et al. Diagnosing a solitary pulmonary nodule using multiple bronchoscopic guided technologies:a prospective randomized study. Lung Cancer. 2019; 129: 48-54.
10)
Tanner NT, Yarmus L, Chen A, et al. Standard bronchoscopy with fluoroscopy vs thin bronchoscopy and radial endobronchial ultrasound for biopsy of pulmonary lesions: a multicenter, prospective, randomized trial. Chest. 2018; 154(5): 1035-43.
11)
Roth K, Eagan TM, Andreassen AH, et al. A randomised trial of endobronchial ultrasound guided sampling in peripheral lung lesions. Lung Cancer. 2011; 74(2): 219-25.
12)
Chao TY, Chien MT, Lie CH, et al. Endobronchial ultrasonography-guided transbronchial needle aspiration increases the diagnostic yield of peripheral pulmonary lesions: a randomized trial. Chest. 2009; 136(1): 229-36.
13)
Oki M, Saka H, Ando M, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. a randomized trial. Am J Respir Crit Care Med. 2015; 192(4): 468-76.
14)
Oki M, Saka H, Asano F, et al. Use of an ultrathin vs thin bronchoscope for peripheral pulmonary lesions: a randomized trial. Chest. 2019; 156(5): 954-64.
15)
Fielding DI, Chia C, Nguyen P, et al. Prospective randomised trial of endobronchial ultrasound-guide sheath versus computed tomography-guided percutaneous core biopsies for peripheral lung lesions. Intern Med J. 2012; 42(8): 894-900.
16)
Steinfort DP, Vincent J, Heinze S, et al. Comparative effectiveness of radial probe endobronchial ultrasound versus CT-guided needle biopsy for evaluation of peripheral pulmonary lesions: a randomized pragmatic trial. Respir Med. 2011; 105(11): 1704-11.
17)
Zhan P, Zhu QQ, Miu YY, et al. Comparison between endobronchialultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: a systematic review and meta-analysis. Transl Lung Cancer Res. 2017; 6(1): 23-34.
18)
Steinfort DP, Khor YH, Manser RL, et al. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J. 2011; 37(4): 902-10.
19)
Ali MS, Trick W, Mba BI, et al. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions:a systematic review and meta-analysis. Respirology. 2017; 22(3): 443-53.
Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012; 142(2): 385-93.
22)
Oshige M, Shirakawa T, Nakamura M, et al. Clinical application of virtual bronchoscopic navigation system for peripheral lung lesions. J Bronchology Interv Pulmonol. 2011; 18(2): 196-202.
23)
Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011; 66(12): 1072-7.
24)
Asano F, Shinagawa N, Ishida T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial. Am J Respir Crit Care Med. 2013; 188(3): 327-33.
25)
Kato A, Yasuo M, Tokoro Y, et al. Virtual bronchoscopic navigation as an aid to CT-guided transbronchial biopsy improves the diagnostic yield for small peripheral pulmonary lesions. Respirology. 2018; 23(11): 1049-54.
26)
Xu C, Yuan Q, Wang Y, et al. Usefulness of virtual bronchoscopic navigation combined with endobronchial ultrasound guided transbronchial lung biopsy for solitary pulmonary nodules. Medicine(Baltimore). 2019; 98(7)e14248.
27)
Lacasse Y, Wong E, Guyatt GH, et al. Transthoracic needle aspiration biopsy for the diagnosis of localised pulmonary lesions: a meta-analysis. Thorax. 1999; 54(10): 884-93.
28)
Choi SH, Chae EJ, Kim JE, et al. Percutaneous CT-guided aspiration and core biopsy of pulmonary nodules smaller than 1 cm: analysis of outcomes of 305 procedures from a tertiary referral center. AJR Am J Roentgenol. 2013; 201(5): 964-70.
29)
Han Y, Kim HJ, Kong KA, et al. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: a systematic review and meta-analysis. PLoS One. 2018; 13(1): e0191590.
30)
Detterbeck FC, DeCamp MM Jr, Kohman LJ, et al; American College of Chest Physicians. Lung cancer. Invasive staging: the guidelines. Chest. 2003; 123(1 Suppl): 167S-175S.
31)
Yang JS, Liu YM, Mao YM, et al. Meta-analysis of CT-guided transthoracic needle biopsy for the evaluation of the ground-glass opacity pulmonary lesions. Br J Radiol. 2014; 87(1042): 20140276.
32)
Ibukuro K, Tanaka R, Takeguchi T, et al. Air embolism and needle track implantation complicating CT-guided percutaneous thoracic biopsy: single-institution experience. AJR Am J Roentgenol. 2009; 193(5): W430-6.
33)
Hiraki T, Fujiwara H, Sakurai J, et al. Nonfatal systemic air embolism complicating percutaneous CT-guided transthoracic needle biopsy: four cases from a single institution. Chest. 2007; 132(2): 684-90.
34)
Wang T, Luo L, Zhou Q. Risk of pleural recurrence in early stage lung cancer patients after percutaneous transthoracic needle biopsy: a meta-analysis. Sci Rep. 2017; 7: 42762.
35)
Kim JH, Kim YT, Lim HK, et al. Management for chest wall implantation of non-small cell lung cancer after fine-needle aspiration biopsy. Eur J Cardiothorac Surg. 2003; 23(5): 828-32.
36)
Robertson EG, Baxter G. Tumour seeding following percutaneous needle biopsy: the real story! Clin Radiol. Clin Radiol. 2011; 66(11): 1007-14.
37)
Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am J Roentgenol. 2011; 196(6): W678-82.
38)
Yamauchi Y, Izumi Y, Nakatsuka S, et al. Diagnostic performance of percutaneous core needle lung biopsy under multi-CT fluoroscopic guidance for ground-glass opacity pulmonary lesions. Eur J Radiol. 2011; 79(2): e85-9.
39)
Yamagami T, Yoshimatsu R, Miura H, et al. Diagnostic performance of percutaneous lung biopsy using automated biopsy needles under CT-fluoroscopic guidance for ground-glass opacity lesions. Br J Radiol. 2013; 86(1022): 20120447.
40)
Tombesi P, Nielsen I, Tassinari D, et al. Transthoracic ultrasonography-guided core needle biopsy of pleural-based lung lesions: prospective randomized comparison between a Tru-cut-type needle and a modified Menghini-type needle. Ultraschall Med. 2009; 30(4): 390-5.
41)
Ahn JH, Jang JG. Initial experience in CT-guided percutaneous transthoracic needle biopsy of lung lesions performed by a pulmonologist. J Clin Med. 2019; 8(6): 821.
42)
Li C, Liu B, Meng H, et al. Efficacy and radiation exposure of ultra-low-dose chest CT at 100 kVp with tin filtration in CT-guided percutaneous core needle biopsy for small pulmonary lesions using a third-generation dual-source CT scanner. J Vasc Interv Radiol. 2019; 30(1): 95-102.
43)
Gill RR, Murphy DJ, Kravets S, et al. Success of genomic profiling of non-small cell lung cancer biopsies obtained by trans-thoracic percutaneous needle biopsy. J Surg Oncol. 2018; 118(7): 1170-7.
44)
Porrello C, Gullo R, Gagliardo CM, et al. CT-guided transthoracic needle biopsy: advantages in histopathological and molecular tests. Future Oncol. 2020; 16(16s): 27-32. Epub 2019 Oct 9.
45)
Hazelrigg SR, Nunchuck SK, LoCicero J 3rd. Video Assisted Thoracic Surgery Study Group data. Ann Thorac Surg. 1993; 56(5): 1039-43; discussion 1043-4.
46)
Voltolini L, Rapicetta C, Luzzi L, et al. Pattern of recurrence and survival of c-Ia NSCLC diagnosed by transpleural methods. J Cardiovasc Surg(Torino). 2008; 49(5): 697-702.
47)
Krishna G, Gould MK. Minimally invasive techniques for the diagnosis of peripheral pulmonary nodules. Curr Opin Pulm Med. 2008; 14(4): 282-6.
48)
De Leyn P, Dooms C, Kuzdzal J, et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2014; 45(5): 787-98.
49)
Jiménez MF. Prospective study on video-assisted thoracoscopic surgery in the resection of pulmonary nodules: 209 cases from the Spanish Video-Assisted Thoracic Surgery Study Group. Eur J Cardiothorac Surg. 2001; 19(5): 562-5.
Chun SM, Sung CO, Jeon H, et al. Next-generation sequencing using S1 nuclease for poor-quality formalin-fixed, paraffin-embedded tumor specimens. J Mol Diagn. 2018; 20(6): 802-11.
4)
Sakakibara R, Inamura K, Tambo Y, et al. EBUS-TBNA as a promising method for the evaluation of tumor PD-L1 expression in lung cancer. Clin Lung Cancer. 2017; 18: 527-34.
5)
Heymann JJ, Bulman WA, Swinarski D, et al. PD-L1 expression in non-small cell lung carcinoma: Comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol. 2017; 125: 896-907.
6)
Ilie M, Long-Mira E, Bence C, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol. 2016; 27: 147-53.
7)
Sato Y, Fujimoto D, Uehara K, et al. Reduced tumour proportion scores for programmed cell death ligand 1 in stored paraffin tissue sections. Anticancer Res. 2018; 38(3): 1401-5.
8)
Bubendorf L, Lantuejoul S, de Langen AJ, et al. Nonsmall cell lung carcinoma: diagnostic difficulties in small biopsies and cytological specimens: number 2 in the series ”Pathology for the clinician” edited by Peter Dorfmuller and Alberto Cavazza. Eur Respir Rev. 2017; 26(144)
9)
Parris BA, Shaw E, Pang B, et al. Somatic mutations and immune checkpoint biomarkers. Respirology. 2019; 24(3): 215-26.
10)
Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018; 142(3): 321-46.
11)
Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018; 20: 129-59.
12)
Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol. 2018; 13(3): 323-58.
Arimura K, Tagaya E, Akagawa H, et al. Cryobiopsy with endobronchial ultrasonography using a guide sheath for peripheral pulmonary lesions and DNA analysis by next generation sequencing and rapid on-site evaluation. Respir Investig. 2019; 57(2): 150-6.
Lozano MD, Echeveste JI, Abengozar M, et al. Cytology smears in the era of molecular biomarkers in non-small cell lung cancer: doing more with less. Arch Pathol Lab Med. 2018; 142: 291-8.
2)
Layfield LJ, Roy-Chowdhuri S, Baloch Z, et al. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology. Diagnostic cytopathology. 2016; 44(12): 1000-9.
3)
Lindeman NI, Cagla PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathol. J Mol Diagn. 2018; 20(2): 129-59.
4)
Roy-Chowdhuri S, Aisner DL, Allen TC, et al. Biomarker testing in lung carcinoma cytology specimens: a perspective from members of the Pulmonary Pathology Society. Arch Pathol Lab Med. 2016; 140: 1267-72.
5)
Jain D, Roy-Chowdhuri S. Molecular pathology of lung cancer cytology specimens: a concise review. Arch Pathol Lab Med. 2018; 140: 1127-33.
6)
Noll B, Wang WL, Gong Y, et al. Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations. Cancer Cytopathol. 2018; 126: 342-52.
7)
Ozluk Y, Firat P, Yegen G, et al. EGFR mutation testing using archival-stained smears in non-small cell lung carcinoma. Cytopathology: official journal of the British Society for Clinical Cytology. 2017; 28: 35-45.
8)
Treece AL, Montgomery ND, Patel N, et al. FNA smears as a potential source of DNA for targeted next-generation sequencing of lung adenocarcinomas. Cancer Cytopathol. 2016; 124: 406-14.
Travis W, Brambilla E, Burke AP, Marx A, Nicholson AG, editors. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. 4th ed: IARC; 2015.
2)
Yatabe Y, Dacic S, Borczuk AC, et al. Best practices recommendations for diagnostic immunohistochemistry in lung cancer. J Thorac Oncol. 2019; 14(3): 377-407.
3)
Osmani L, Askin F, Gabrielson E, et al. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma(NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol. 2018; 52(Pt 1): 103-9.
4)
Mukhopadhyay S, AL Katzenstein. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: utility of an immunohistochemical panel containing Ttf-1, Napsin a, P63, and Ck5/6. Am J Surg Pathol. 2011; 35(1): 15-25.
5)
Rekhtman N, LJ Tafe, JE Chaft, et al. Distinct profile of driver mutations and clinical features in immunomarker-defined subsets of pulmonary large-cell carcinoma. Mod Pathol. 2013; 26(4): 511-22.
6)
Ota T, Kirita K, Matsuzawa R, et al. Validity of using immunohistochemistry to predict treatment outcome in patients with non-small cell lung cancer not otherwise specified. J Cancer Res Clin Oncol. 2019; 145(10): 2495-506.
7)
Szade J, Majewska HI, Żaczek AJ, et al. High-grade non-small cell lung carcinoma: a comparative analysis of the phenotypic profile in small biopsies with the corresponding postoperative material. Pol J Pathol. 2019; 70(2): 100-8.
8)
Nonaka D. A study of deltanp63 expression in lung non-small cell carcinomas. Am J Surg Pathol. 2012; 36(6): 895-9.
9)
Warth A, Muley T, Herpel E, et al. Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology. 2012; 61(6): 1017-25.
10)
Chang JC, Montecalvo J, Borsu L, et al. Bronchiolar adenoma: expansion of the concept of ciliated muconodular papillary tumors with proposal for revised terminology based on morphologic, immunophenotypic, and genomic analysis of 25 cases. Am J Surg Pathol. 2018; 42(8): 1010-26.
Detterbeck FC, Nicholson AG, Franklin WA, et al. The IASLC Lung Cancer Staging Project: Summary of proposals for revisions of the classification of lung cancers with multiple pulmonary sites of involvement in the forthcoming eighth edition of the TNM classification. J Thorac Oncol. 2016; 11(5): 639-50.
Suda K, Murakami I, Sakai K, et al. Small cell lung cancer transformation and T790M mutation: complimentary roles in acquired resistance to kinase inhibitors in lung cancer. Sci Rep. 2015; 5: 14447.
6)
Zhu B, Dalal S, Kamp DW, et al. Warranting investigation of primary lung adenocarcinoma in patients with an extrapulmonary malignancy and lung nodules due to high frequency. Am J Clin Pathol. 2014; 141(3): 429-36.
7)
Hattori Y, Yoshida A, Yoshida M, et al. Evaluation of androgen receptor and GATA binding protein 3 as immunohistochemical markers in the diagnosis of metastatic breast carcinoma to the lung. Pathol Int. 2015; 65(6): 286-92.
8)
Zhu B, Rohan SM, Lin X. Immunoexpression of napsin A in renal neoplasms. Diagn Pathol. 2015; 10: 4.
9)
Provenzano E, Byrne DJ, Russell PA, et al. Differential expression of immunohistochemical markers in primary lung and breast cancers enriched for triple-negative tumours. Histopathology. 2016; 68(3): 367-77.
10)
Nottegar A, Tabbò F, Luchini C, et al. Pulmonary adenocarcinoma with enteric differentiation: immunohistochemistry and molecular morphology. Appl Immunohistochem Mol Morphol. 2018; 26(6): 383-7.
11)
Ni YB, Tsang JYS, Shao MM, et al. GATA-3 is superior to GCDFP-15 and mammaglobin to identify primary and metastatic breast cancer. Breast Cancer Res Treat. 2018; 169(1): 25-32.
12)
Vidarsdottir H, Tran L, Nodin B, et al. Immunohistochemical profiles in primary lung cancers and epithelial pulmonary metastases. Hum Pathol. 2019; 84: 221-30.
13)
Aulakh KS, Chisholm CD, Smith DA, et al. TTF-1 and napsin A do not differentiate metastatic lung adenocarcinomas from primary esophageal adenocarcinomas: proposal of a novel staining panel. Arch Pathol Lab Med. 2013; 137(8): 1094-8.
14)
El Hag M, Schmidt L, Roh M, et al. Utility of TTF-1 and Napsin-A in the work-up of malignant effusions. Diagn Cytopathol. 2016; 44(4): 299-304.
15)
Vidarsdottir H, Tran L, Nodin B, et al. Comparison of three different ttf-1 clones in resected primary lung cancer and epithelial pulmonary metastases. Am J Clin Pathol. 2018; 150(6): 533-44.
16)
Wu J, Chu PG, Jiang Z, et al. Napsin A expression in primary mucin-producing adenocarcinomas of the lung: an immunohistochemical study. Am J Clin Pathol. 2013; 139(2): 160-6.
17)
Heymann JJ, Hoda RS, Scognamiglio T. Polyclonal napsin A expression: a potential diagnostic pitfall in distinguishing primary from metastatic mucinous tumors in the lung. Arch Pathol Lab Med. 2014; 138(8): 1067-71.
18)
Kim MY, Go H, Koh J, et al. Napsin A is a useful marker for metastatic adenocarcinomas of pulmonary origin. Histopathology. 2014; 65(2): 195-206.
19)
Sugano M, Nagasaka T, Sasaki E, et al. HNF4α as a marker for invasive mucinous adenocarcinoma of the lung. Am J Surg Pathol. 2013; 37(2): 211-8.
20)
Kunii R, Jiang S, Hasegawa G, et al. The predominant expression of hepatocyte nuclear factor 4α(HNF4α)in thyroid transcription factor-1(TTF-1)-negative pulmonary adenocarcinoma. Histopathology. 2011; 58(3): 467-76.
21)
Ichinose J, Shinozaki-Ushiku A, Nagayama K, et al. Immunohistochemical pattern analysis of squamous cell carcinoma: Lung primary and metastatic tumors of head and neck. Lung Cancer. 2016; 100: 96-101.
22)
van Boerdonk RA, Daniels JM, Bloemena E, et al. High-risk human papillomavirus-positive lung cancer: molecular evidence for a pattern of pulmonary metastasis. J Thorac Oncol. 2013; 8(6): 711-8.
主病変の診断が術前に得られておらず,手術方針の決定に診断が必要である場合,術中迅速診断を依頼することができる。主病変に対する迅速診断の正診率は一般に高く,良悪性の判定,癌か肉芽腫かといった大まかな区別も含めるなら,永久標本との不一致率は1~3%程度と低く,判定保留率は3~5%程度とする報告が複数ある1)~3)。しかしながら,永久標本における診断と迅速診断との不一致が低率ながらも存在することには十分留意すべきである。また,迅速診断の正診率には腫瘍の種類や大きさなども影響し,例えばカルチノイド4),硬化性肺胞上皮腫5),線毛性粘液結節性乳頭腫(細気管支腺腫)6)における正診率はやや低く,また1 cm 以下の主病変に対する迅速診断での正診率は1 cm を超える病変のものより低いとするデータがある2)。さらに,永久標本での診断と同様の詳細な予後予測因子の判定を迅速診断に期待するのは難しい。例えば,腺癌における浸潤の有無や浸潤の範囲については,正診率が低い傾向があり7)~13),非浸潤性腺癌や微少浸潤腺癌の診断を術中迅速で正確に行うことは容易でない。さらに,腺癌の分類に用いられる優勢浸潤パターンやいわゆるSTAS の有無についても,迅速と永久標本での評価不一致が多く13)~18),推奨しない。なお,迅速診断検体採取においては胸膜との関係などに留意しpT 評価に支障をきたさない採取を心がける。また迅速検査として未固定組織を扱う場合には,安全キャビネット内の処理を原則とし,感染症が特に疑われる場合には細胞診を優先して暴露を減らすなどの工夫や細菌学的検査を行うことが望ましい。
以上よりエビデンスの強さはD,また総合的評価では行うことを強く推奨(1 で推奨)できると判断した。
下記に,推奨度決定のために行われた投票結果を記載する。
引用文献
1)
Gupta R, McKenna R Jr, Marchevsky AM. Lessons learned from mistakes and deferrals in the frozen section diagnosis of bronchioloalveolar carcinoma and well-differentiated pulmonary adenocarcinoma: an evidence-based pathology approach. Am J Clin Pathol. 2008; 130: 11-20.
2)
Marchevsky AM, Changsri C, Gupta I, et al. Frozen section diagnoses of small pulmonary nodules: accuracy and clinical implications. Ann Thorac Surg. 2004; 78(5): 1755-9.
3)
Sirmali M, Demirag F, Turut H, et al. Utility of intraoperative frozen section examination in thoracic surgery. A review of 721 cases. J Cardiovasc Surg(Torino). 2006; 47(1): 83-7.
4)
Gupta R, Dastane A, McKenna RJ Jr, et al. What can we learn from the errors in the frozen section diagnosis of pulmonary carcinoid tumors? An evidence-based approach. Hum Pathol. 2009; 40(1): 1-9.
5)
Yang CH, Lee LY. Pulmonary sclerosing pneumocytoma remains a diagnostic challenge using frozen sections: a clinicopathological analysis of 59 cases. Histopathology. 2018; 72(3): 500-8.
6)
Chang JC, Montecalvo J, Borsu L, et al. Bronchiolar adenoma: expansion of the concept of ciliated muconodular papillary tumors with proposal for revised terminology based on morphologic, immunophenotypic, and genomic analysis of 25 cases. Am J Surg Pathol. 2018; 42(8): 1010-26.
7)
He P, Yao G, Guan Y, et al. Diagnosis of lung adenocarcinoma in situ and minimally invasive adenocarcinoma from intraoperative frozen sections: an analysis of 136 cases. J Clin Pathol. 2016; 69(12): 1076-80.
8)
Liu S, Wang R, Zhang Y, et al. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma. J Clin Oncol. 2016; 34(4): 307-13.
9)
Koike T, Togashi K, Shirato T, et al. Limited resection for noninvasive bronchioloalveolar carcinoma diagnosed by intraoperative pathologic examination. Ann Thorac Surg. 2009; 88(4): 1106-11.
10)
Walts AE, Marchevsky AM. Root cause analysis of problems in the frozen section diagnosis of in situ, minimally invasive, and invasive adenocarcinoma of the lung. Arch Pathol Lab Med. 2012; 136(12): 1515-21.
11)
Li F, Yang L, Zhao Y, et al. Intraoperative frozen section for identifying the invasion status of lung adenocarcinoma: A systematic review and meta-analysis. Int J Surg. 2019; 72: 175-84.
12)
Zhu E, Xie H, Dai C, et al. Intraoperatively measured tumor size and frozen section results should be considered jointly to predict the final pathology for lung adenocarcinoma. Mod Pathol. 2018; 31(9): 1391-9.
13)
Cheng X, Zheng D, Li Y, et al. Tumor histology predicts mediastinal nodal status and may be used to guide limited lymphadenectomy in patients with clinical stage Ⅰ non-small cell lung cancer. J Thorac Cardiovasc Surg. 2018; 155(6): 2648-56. e2.
14)
Trejo Bittar HE, Incharoen P, Althouse AD, et al. Accuracy of the IASLC/ATS/ERS histological subtyping of stage Ⅰ lung adenocarcinoma on intraoperative frozen sections. Mod Pathol. 2015; 28(8): 1058-63.
15)
Yeh YC, Nitadori J, Kadota K, et al. Using frozen section to identify histological patterns in stage Ⅰ lung adenocarcinoma of </=3 cm: accuracy and interobserver agreement. Histopathology. 2015; 66(7): 922-38.
16)
Shih AR, Mino-Kenudson M. Updates on spread through air spaces(STAS)in lung cancer. Histopathology. 2020 Jan 14. doi: 10.1111/his.14062.[Epub ahead of print]Review.
17)
Walts AE, Marchevsky AM. Current evidence does not warrant frozen section evaluation for the presence of tumor spread through alveolar spaces. Arch Pathol Lab Med. 2018; 142(1): 59-63.
18)
Suh JW, Jeong YH, Cho A, et al. Stepwise flowchart for decision making on sublobar resection through the estimation of spread through air space in early stage lung cancer. Lung Cancer. 2020; 142: 28-33. Epub 2020 Feb 4.
Okada M, Sakamoto T, Nishio W, et al. Pleural lavage cytology in non-small cell lung cancer: lessons from 1000 consecutive resections. J Thorac Cardiovasc Surg. 2003; 126(6): 1911-5.
2)
Lim E, Ali A, Theodorou P, et al. Intraoperative pleural lavage cytology is an independent prognostic indicator for staging non-small cell lung cancer. J Thorac Cardiovasc Surg. 2004; 127(4): 1113-8.
3)
Nakagawa T, Okumura N, Kokado Y, et al. Clinical relevance of intraoperative pleural lavage cytology in non-small cell lung cancer. Ann Thorac Surg. 2007; 83(1): 204-8.
4)
Higashiyama M, Oda K, Okami J, et al. Prognostic value of intraoperative pleural lavage cytology for lung cancer without carcinomatous pleuritis: importance in patients with early stage disease during long-term follow-up. Eur J Cardiothorac Surg. 2009; 35(2): 337-42.
5)
Shintani Y, Ohta M, Iwasaki T, et al. Intraoperative pleural lavage cytology after lung resection as an independent prognostic factor for staging lung cancer. J Thorac Cardiovasc Surg. 2009; 137(4): 835-9.
International Pleural Lavage Cytology Collaborators. Impact of positive pleural lavage cytology on survival in patients having lung resection for non-small-cell lung cancer: An international individual patient data meta-analysis. J Thorac Cardiovasc Surg. 2010; 139: 1441-6.
8)
Aokage K, Yoshida J, Ishii G, et al. The impact on survival of positive intraoperative pleural lavage cytology in patients with non-small-cell lung cancer. J Thorac Cardiovasc Surg. 2010; 139(5): 1246-52, 1252.e1.
9)
Kaneda M, Yokoi K, Ito S, et al. The value of pleural lavage cytology examined during surgery for primary lung cancer. Eur J Cardiothorac Surg. 2012; 41(6): 1335-41.
10)
Yanagawa N, Shiono S, Abiko M, et al. Positive intraoperative pleural lavage cytology is a predictive marker of disease recurrence in stage Ⅰ lung adenocarcinoma. Interact Cardiovasc Thorac Surg. 2014; 18(5): 621-5.
11)
Kameyama K, Okumura N, Miyaoka E, et al. Prognostic value of intraoperative pleural lavage cytology for non-small cell lung cancer: the influence of positive pleural lavage cytology results on T classification. J Thorac Cardiovasc Surg. 2014; 148(6): 2659-64.
12)
Nakamura T, Otsuki Y, Nakamura H, et al. Pleural lavage cytology after lung resection in patients with non-small cell lung cancer and the feasibility of 20 mL saline solution. Asian J Surg. 2019; 42(1): 283-89.
13)
Mikubo M, Naito M, Matsui Y, et al. Relevance of intraoperative pleural lavage cytology and histologic subtype in lung adenocarcinoma. Ann Thorac Surg. 2018; 106(6): 1654-60.
d. 縦隔鏡検査とEBUS-TBNA の非小細胞肺癌の縦隔病期診断に対する効果を比較したメタアナリシスによると縦隔鏡の感度は86%,特異度100%とされ,EBUS-TBNA の感度84%,特異度100%と差はなく,合併症の頻度はEBUS-TBNA のほうが少ないことが示された18)。超音波内視鏡検査後の縦隔鏡検査の必要性に関しては議論があるものの28)29),超音波内視鏡検査陰性症例に縦隔鏡検査を加えると,縦隔リンパ節転移を診断できる症例が増えることが報告されており23)27),術前の画像検査で縦隔リンパ節転移が疑われ,超音波内視鏡検査では縦隔リンパ節転移を認めなかった場合,必要と判断される症例に対して,縦隔鏡検査などの外科的生検を行うよう提案する。
Aokage K, Miyoshi T, Ishii G, et al. Clinical and pathological staging validation in the eighth edition of the TNM classification for lung cancer: correlation between solid size on thin-section computed tomography and invasive size in pathological findings in the new T classification. J Thorac Oncol. 2017; 12(9): 1403-12.
2)
Quint LE, Francis IR. Radiologic staging of lung cancer. J Thorac Imaging. 1999; 14(4): 235-46.
3)
Mori K, Hirose T, Machida S, et al. Helical computed tomography diagnosis of pleural dissemination in lung cancer: comparison of thick-section and thin-section helical computed tomography. J Thorac Imaging. 1998; 13(3): 211-8.
4)
Munden RF, Swisher SS, Stevens CW, et al. Imaging of the patient with non-small cell lung cancer. Radiology. 2005; 237(3): 803-18.
5)
Steinert HC. PET and PET-CT of lung cancer. Methods Mol Biol. 2011; 727: 33-51.
6)
De Wever W, Stroobants S, Coolen J, et al. Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration. Eur Respir J. 2009; 33(1): 201-12.
7)
Tang W, Wu N, OuYang H, et al. The presurgical T staging of non-small cell lung cancer: efficacy comparison of 64-MDCT and 3.0 T MRI. Cancer Imaging. 2015; 15: 14.
8)
Nomori H, Watanabe K, Ohtsuka T, et al. Evaluation of F-18 fluorodeoxyglucose(FDG)PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004; 45(1): 19-27.
9)
Birim O, Kappetein AP, Stijnen T, et al. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg. 2005; 79(1): 375-82.
10)
Schmidt-Hansen M, Baldwin DR, Hasler E, et al. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev. 2014;(11): CD009519.
11)
Shen G, Lan Y, Zhang K, et al. Comparison of 18F-FDG PET/CT and DWI for detection of mediastinal nodal metastasis in non-small cell lung cancer: a meta-analysis. PLoS One. 2017; 12(3): e0173104.
12)
Wu LM, Xu JR, Gu HY, et al. Preoperative mediastinal and hilar nodal staging with diffusion-weighted magnetic resonance imaging and fluorodeoxyglucose positron emission tomography/computed tomography in patients with non-small-cell lung cancer: which is better? J Surg Res. 2012; 178(1): 304-14.
13)
Peerlings J, Troost EG, Nelemans PJ, et al. The diagnostic value of MR imaging in determining the lymph node status of patients with non-small cell lung cancer: a meta-analysis. Radiology. 2016; 281(1): 86-98.
14)
Shen G, Hu S, Deng H, et al. Performance of DWI in the nodal characterization and assessment of lung cancer: a meta-analysis. AJR Am J Roentgenol. 2016; 206(2): 283-90.
15)
Dong X, Qiu X, Liu Q, et al. Endobronchial ultrasound-guided transbronchial needle aspiration in the mediastinal staging of non-small cell lung cancer: a meta-analysis. Ann Thorac Surg. 2013; 96(4): 1502-7.
16)
Micames CG, McCrory DC, Pavey DA, et al. Endoscopic ultrasound-guided fine-needle aspiration for non-small cell lung cancer staging: a systematic review and metaanalysis. Chest. 2007; 131(2): 539-48.
17)
Chandra S, Nehra M, Agarwal D, et al. Diagnostic accuracy of endobronchial ultrasound-guided transbronchial needle biopsy in mediastinal lymphadenopathy: a systematic review and meta-analysis. Respir Care. 2012; 57(3): 384-91.
18)
Ge X, Guan W, Han F, et al. Comparison of endobronchial ultrasound-guided fine needle aspiration and video-assisted mediastinoscopy for mediastinal staging of lung cancer. Lung. 2015; 193(5): 757-66.
19)
Korevaar DA, Crombag LM, Cohen JF, et al. Added value of combined endobronchial and oesophageal endosonography for mediastinal nodal staging in lung cancer: a systematic review and meta-analysis. Lancet Respir Med. 2016; 4(12): 960-8.
20)
Asano F, Aoe M, Ohsaki Y, et al. Complications associated with endobronchial ultrasound-guided transbronchial needle aspiration: a nationwide survey by the Japan Society for Respiratory Endoscopy. Respir Res. 2013; 14: 50.
21)
Labarca G, Aravena C, Ortega F, et al. Minimally invasive methods for staging in lung cancer: systematic review and meta-analysis. Pulm Med. 2016; 2016: 1024709.
22)
Zhang R, Ying K, Shi L, et al. Combined endobronchial and endoscopic ultrasound-guided fine needle aspiration for mediastinal lymph node staging of lung cancer: a meta-analysis. Eur J Cancer. 2013; 49(8): 1860-7.
23)
Annema JT, van Meerbeeck JP, Rintoul RC, et al. Mediastinoscopy vs endosonography for mediastinal nodal staging of lung cancer: a randomized trial. JAMA. 2010; 304(20): 2245-52.
24)
Crombag LMM, Dooms C, Stigt JA, et al. Systematic and combined endosonographic staging of lung cancer(SCORE study). Eur Respir J. 2019; 53(2): 1800800.
25)
Wang J, Welch K, Wang L, et al. Negative predictive value of positron emission tomography and computed tomography for stage T1-2N0 non-small-cell lung cancer: a meta-analysis. Clin Lung Cancer. 2012; 13(2): 81-9.
26)
Lee PC, Port JL, Korst RJ, et al. Risk factors for occult mediastinal metastases in clinical stage Ⅰ non-small cell lung cancer. Ann Thorac Surg. 2007; 84(1): 177-81.
27)
Dooms C, Tournoy KG, Schuurbiers O, et al. Endosonography for mediastinal nodal staging of clinical N1 non-small cell lung cancer: a prospective multicenter study. Chest. 2015; 147(1): 209-15.
28)
Yasufuku K, Pierre A, Darling G, et al. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. J Thorac Cardiovasc Surg. 2011; 142(6): 1393-400.
29)
Bousema JE, van Dorp M, Noyez VJJM, et al. Unforeseen N2 disease after negative endosonography findings with or without confirmatory mediastinoscopy in resectable non-small cell lung cancer: a systematic review and meta-analysis. J Thorac Oncol. 2019; 14(6): 979-92.
Cerfolio RJ, Ojha B, Bryant AS, et al. The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg. 2004; 78(3): 1017-23.
32)
De Wever W, Ceyssens S, Mortelmans L, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol. 2007; 17(1): 23-32.
33)
Wu Y, Li P, Zhang H, et al. Diagnostic value of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for the detection of metastases in non-small-cell lung cancer patients. Int J Cancer. 2013; 132(2): E37-47.
34)
Silvestri GA, Littenberg B, Colice GL. The clinical evaluation for detecting metastatic lung cancer. A meta-analysis. Am J Respir Crit Care Med. 1995; 152(1): 225-30.
35)
Silvestri GA, Tanoue LT, Margolis ML, et al. The noninvasive staging of non-small cell lung cancer: the guidelines. Chest. 2003; 123(1 Suppl): 147S-156S.
36)
Davis PC, Hudgins PA, Peterman SB, et al. Diagnosis of cerebral metastases: double-dose delayed CT vs contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 1991; 12(2): 293-300.
37)
Akeson P, Larsson EM, Kristoffersen DT, et al. Brain metastases–comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. Acta Radiol. 1995; 36(3): 300-6.
38)
Krüger S, Mottaghy FM, Buck AK, et al. Brain metastasis in lung cancer. Comparison of cerebral MRI and 18F-FDG-PET/CT for diagnosis in the initial staging. Nuklearmedizin. 2011; 50(3): 101-6.
39)
Lee HY, Lee KS, Kim BT, et al. Diagnostic efficacy of PET/CT plus brain MR imaging for detection of extrathoracic metastases in patients with lung adenocarcinoma. J Korean Med Sci. 2009; 24(6): 1132-8.
40)
Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer(Japan Clinical Oncology Group 0201). J Thorac Oncol. 2011; 6(4): 751-6.
41)
The American Thoracic Society and The European Respiratory Society. Pretreatment evaluation of non-small-cell lung cancer. Am J Respir Crit Care Med. 1997; 156(1): 320-32.
42)
Silvestri GA, Gould MK, Margolis ML, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines(2nd edition). Chest. 2007; 132(3 Suppl): 178S-201S.
43)
Qu X, Huang X, Yan W, et al. A meta-analysis of 18FDG-PET-CT, 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012; 81(5): 1007-15.
44)
Schirrmeister H, Arslandemir C, Glatting G, et al. Omission of bone scanning according to staging guidelines lead to futile therapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2004; 31(7): 964-8.
45)
Paul NS, Ley S, Metser U. Optimal imaging protocols for lung cancer staging: CT, PET, MR imaging, and the role of imaging. Radiol Clin North Am. 2012; 50(5): 935-49.
46)
Pieterman RM, van Putten JW, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000; 343(4): 254-61.
47)
Carr LL, Finigan JH, Kern JA. Evaluation and treatment of patients with non-small cell lung cancer. Med Clin North Am. 2011; 95(6): 1041-54.
48)
Oliver TW Jr, Bernardino ME, Miller JI, et al. Isolated adrenal masses in nonsmall-cell bronchogenic carcinoma. Radiology. 1984; 153(1): 217-8.
49)
Heinz-Peer G, Hönigschnabl S, Schneider B, et al. Characterization of adrenal masses using MR imaging with histopathologic correlation. AJR Am J Roentgenol. 1999; 173(1): 15-22.
50)
Gillams A, Roberts CM, Shaw P, et al. The value of CT scanning and percutaneous fine needle aspiration of adrenal masses in biopsy-proven lung cancer. Clin Radiol. 1992; 46(1): 18-22.
51)
Chong S, Lee KS, Kim HY, et al. Integrated PET-CT for the characterization of adrenal gland lesions in cancer patients: diagnostic efficacy and interpretation pitfalls. Radiographics. 2006; 26(6): 1811-24.
Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor(WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010; 11(2): 121-8.
2)
Solomon BJ, Mok T, Kim DW, et al; PROFILE 1014 Investigators. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014; 371(23): 2167-77.
3)
Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014; 371(21): 1963-71.
4)
Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016; 17(7): 984-93.
5)
Park PK, Felip E, Veillon R, et al. Tepotinib in NSCLC patients harboring METex14 skipping: Cohort A of phase Ⅱ VISION study[abstract no.620]. Ann Oncol. 2019; 30(Suppl 9): ix22-ix23.
6)
Reck M, Rodríguez-Abreu D, Robinson AG, et al; KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016; 375(19): 1823-33.
7)
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or Greater. J Clin Oncol. 2019; 37(7): 537-46.
8)
Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer(KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019; 393(10183): 1819-30.
9)
Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020; 383(14): 1328-39.
10)
Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018; 378(22): 2078-92.
11)
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018; 378(24): 2288-301.
12)
Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017; 376(7): 629-40.
13)
Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018; 379(21): 2040-51.
14)
Marchetti A, Martella C, Felicioni L, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005; 23(4): 857-65.
15)
Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012; 489(7417): 519-25.
16)
Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012; 30(8): 863-70.
17)
Kinno T, Tsuta K, Shiraishi K, et al. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol. 2014; 25(1): 138-42.
18)
Schrock AB, Frampton GM, Suh J, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016; 11(9): 1493-502.
19)
Liu X, Jia Y, Stoopler MB, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016; 34(8): 794-802.
20)
Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020; 21(2): 271-82.
21)
Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase Ⅱ KEYNOTE-158 study. J Clin Oncol. 2020; 38(1): 1-10.
22)
Seto T, Matsumoto S, You K, et al. Contribution of nationwide genome screening in Japan(LC-SCRUM-Japan)to the development of precision medicine for non-small cell lung cancer. J Clin Oncol. 2018; 36(15 suppl): 9085.
米国Lung Cancer Study Group によって腫瘍最大径3 cm 以下のリンパ節転移を伴わない肺癌に対する肺葉切除と縮小切除を比較したランダム化比較試験が1995 年に報告された4)。この研究によると肺葉切除に比べて縮小切除は局所再発が3 倍となり,予後不良の傾向が認められた。人工呼吸器を要する呼吸不全などの重症合併症は肺葉切除に多かったものの,結論としては至適術式は肺葉切除であるとされた。肺葉切除と縮小切除の間で比較された手術死亡率に関する3,270 例の外科切除例の検討では,両者に差は認められなかった5)。
Gass GD, Olsen GN. Preoperative pulmonary function testing to predict postoperative morbidity and mortality. Chest. 1986; 89(1): 127-35.
2)
Puri V, Crabtree TD, Bell JM, et al. National cooperative group trials of “high-risk” patients with lung cancer: are they truly“high-risk”? Ann Thorac Surg. 2014; 97(5): 1678-83; discussion 1683-5.
3)
Olsen GN, Block AJ, Tobias JA. Prediction of postpneumonectomy pulmonary function using quantitative macroaggregate lung scanning. Chest. 1974; 66(1): 13-6.
4)
Wernly JA, DeMeester TR, Kirchner PT, et al. Clinical value of quantitative ventilation-perfusion lung scans in the surgical management of bronchogenic carcinoma. J Thorac Cardiovasc Surg. 1980; 80(4): 535-43.
5)
Ferguson MK, Watson S, Johnson E, et al. Predicted postoperative lung function is associated with all-cause long-term mortality after major lung resection for cancer. Eur J Cardiothorac Surg. 2014; 45(4): 660-4.
6)
Sawabata N, Nagayasu T, Kadota Y, et al. Risk assessment of lung resection for lung cancer according to pulmonary function: republication of systematic review and proposals by guideline committee of the Japanese association for chest surgery 2014. Gen Thorac Cardiovasc Surg. 2015; 63(1): 14-21.
7)
Sebio Garcia R, Yáñez Brage MI, Giménez Moolhuyzen E, et al. Functional and postoperative outcomes after preoperative exercise training in patients with lung cancer: a systematic review and metaanalysis. Interact Cardiovasc Thorac Surg. 2016; 23(3): 486-97.
8)
Lai Y, Su J, Qiu P, et al. Systematic short-term pulmonary rehabilitation before lung cancer lobectomy: a randomized trial. Interact Cardiovasc Thorac Surg. 2017; 25(3): 476-83.
9)
Bhatia C, Kayser B. Preoperative high-intensity interval training is effective and safe in deconditioned patients with lung cancer: A randomized clinical trial. J Rehabil Med. 2019; 51(9): 712-8.
10)
Sawabata N, Fujii Y, Asamura H, et al. Lung cancer in Japan: Analysis of lung cancer registry cases resected in 2004. Nihon Kokyuki Gakkai Zasshi. 2011; 49(4): 327-42.
臨床病期Ⅰ‒Ⅱ期
1)
Asamura H, Goya T, Koshiishi Y, et al. A Japanese Lung Cancer Registry study: prognosis of 13,010 resected lung cancers. J Thorac Oncol. 2008; 3(1): 46-52.
2)
Goya T, Asamura H, Yoshimura H, et al. Prognosis of 6644 resected non-small cell lung cancers in Japan: A Japanese lung cancer registry study. Lung Cancer. 2005; 50(2): 227-34.
3)
Okami J, Shintani Y, Okumura M, et al. Demographics, Safety and Quality, and Prognostic Information in Both the Seventh and Eighth Editions of the TNM Classification in 18,973 Surgical Cases of the Japanese Joint Committee of Lung Cancer Registry Database in 2010. J Thorac Oncol. 2019; 14(2): 212-22.
4)
Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1995; 60(3): 615-22; discussion 622-3.
5)
Watanabe S, Asamura H, Suzuki K, et al. Recent results of postoperative mortality for surgical resections in lung cancer. Ann Thorac Surg. 2004; 78(3): 999-1002.
6)
Nakamura H, Kawasaki N, Taguchi M, et al. Survival following lobectomy vs limited resection for stage Ⅰ lung cancer: a meta-analysis. Br J Cancer. 2005; 92(6): 1033-7.
7)
Tsubota N, Ayabe K, Doi O, et al. Ongoing prospective study of segmentectomy for small lung tumors. Study Group of Extended Segmentectomy for Small Lung Tumor. Ann Thorac Surg. 1998; 66(5): 1787-90.
8)
Yoshikawa K, Tsubota N, Kodama K, et al. Prospective study of extended segmentectomy for small lung tumors: the final report. Ann Thorac Surg. 2002; 73(4): 1055-8.
9)
Okada M, Koike T, Higashiyama M, et al. Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg. 2006; 132(4): 769-75.
10)
Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical ⅠA lung cancer(Japan Clinical Oncology Group 0201). J Thorac Oncol. 2011; 6(4): 751-6.
11)
Yamato Y, Tsuchida M, Watanabe T, et al. Early results of a prospective study of limited resection for bronchioloalveolar adenocarcinoma of the lung. Ann Thorac Surg. 2001; 71(3): 971-4.
12)
Yoshida J, Nagai K, Yokose T, et al. Limited resection trial for pulmonary ground-glass opacity nodules: fifty-case experience. J Thorac Cardiovasc Surg. 2005; 129(5): 991-6.
13)
Yoshida J, Ishii G, Yokose T, et al. Possible delayed cut-end recurrence after limited resection for ground-glass opacity adenocarcinoma, intraoperatively diagnosed as Noguchi type B, in three patients. J Thorac Oncol. 2010; 5(4): 546-50.
14)
Yendamuri S, Sharma R, Demmy M, et al. Temporal trends in outcomes following sublobar and lobar resections for small(≤2 cm)non-small cell lung cancers–a Surveillance Epidemiology End Results database analysis. J Surg Res. 2013; 183(1): 27-32.
15)
Suzuki K, Saji H, Aokage K, et al. Comparison of pulmonary segmentectomy and lobectomy: Safety results of a randomized trial. J Thorac Cardiovasc Surg. 2019; 158(3): 895-907.
16)
Altorki NK, Wang X, Wigle D, et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial(CALGB/Alliance 140503). Lancet Respir Med. 2018; 6(12): 915-24.
17)
Martin-Ucar AE, Nakas A, Pilling JE, et al. A case-matched study of anatomical segmentectomy versus lobectomy for stage Ⅰ lung cancer in high-risk patients. Eur J Cardiothorac Surg. 2005; 27(4): 675-9.
18)
Hsie M, Morbidini-Gaffney S, Kohman LJ, et al. Definitive treatment of poor-risk patients with stage Ⅰ lung cancer: a single institution experience. J Thorac Oncol. 2009; 4(1): 69-73.
19)
Ajmani GS, Wang CH, Kim KW, et al. Surgical quality of wedge resection affects overall survival in patients with early stage non-small cell lung cancer. J Thorac Cardiovasc Surg. 2018; 156(1): 380-91. e2.
Sawabata N, Miyaoka E, Asamura H, et al. Japanese lung cancer registry study of 11,663 surgical cases in 2004: demographic and prognosis changes over decade. J Thorac Oncol. 2011; 6(7): 1229-35.
3)
Yoshino I, Yoshida S, Miyaoka E, et al. Surgical outcome of stage ⅢA- cN2/pN2 non-small-cell lung cancer patients in Japanese lung cancer registry study in 2004. J Thorac Oncol. 2012; 7(5): 850-5.
臨床病期ⅢA 期T4N0‒1
1)
Muralidaran A, Detterbeck FC, Boffa DJ, et al. Long-term survival after lung resection for non-small cell lung cancer with circulatory bypass: a systematic review. J Thorac Cardiovasc Surg. 2011; 142(5): 1137-42.
2)
Ohta M, Hirabayasi H, Shiono H, et al. Surgical resection for lung cancer with infiltration of the thoracic aorta. J Thorac Cardiovasc Surg. 2005; 129(4): 804-8.
3)
Wex P, Graeter T, Zaraca F, et al. Surgical resection and survival of patients with unsuspected single node positive lung cancer(NSCLC)invading the descending aorta. Thorac Surg Sci. 2009; 6: Doc02.
4)
Kuehnl A, Lindner M, Hornung HM, et al. Atrial resection for lung cancer: morbidity, mortality, and long-term follow-up. World J Surg. 2010; 34(9): 2233-9.
5)
Spaggiari L, Tessitore A, Casiraghi M, et al. Survival after extended resection for mediastinal advanced lung cancer: lessons learned on 167 consecutive cases. Ann Thorac Surg. 2013; 95(5): 1717-25.
6)
Stella F, Dell’Amore A, Caroli G, et al. Surgical results and long-term follow-up of T4(4)-non-small-cell lung cancer invading the left atrium or the intrapericardial base of the pulmonary veins. Interact Cardiovasc Thorac Surg. 2014; 97(5): 415-9.
7)
Galvaing G, Tardy MM, Cassagnes L, et al. Left atrial resection for T4 lung cancer without cardiopulmonary bypass: technical aspects and outcomes. Ann Thorac Surg. 2014; 97(5): 1708-13.
8)
Tsukioka T, Takahama M, Nakajima R, et al. Surgical outcome of patients with lung cancer involving the left atrium. Int J Clin Oncol. 2016; 21(6): 1046-50.
9)
Spaggiari L, Leo F, Veronesi G, et al. Superior vena cava resection for lung and mediastinal malignancies: a single-center experience with 70 cases. Ann Thorac Surg. 2007; 83(1): 223-9.
10)
Suzuki K, Asamura H, Watanabe S, et al. Combined resection of superior vena cava for lung carcinoma: prognostic significance of patterns of superior vena cava invasion. Ann Thorac Surg. 2004; 73(4): 1184-9.
11)
Yildizeli B, Dartevelle PG, Fadel E, et al. Results of primary surgery with T4 non-small cell lung cancer during a 25-year period in a single center: the benefit is worth the risk. Ann Thorac Surg. 2008; 86(4): 1065-75.
12)
Mitchell JD, Mathisen DJ, Wright CD, et al. Resection for bronchogenic carcinoma involving the carina: long-term results and effect of nodal status on outcome. J Thorac Cardiovasc Surg. 2001; 121(3): 465-71.
13)
Rea F, Marulli G, Schiavon M, et al. Tracheal sleeve pneumonectomy for non small cell lung cancer(NSCLC): short and long-term results in a single institution. Lung Cancer. 2008; 61(2): 202-8.
14)
Regnard JF, Perrotin C, Giovannetti R, et al. Resection for tumors with carinal involvement: technical aspects, results, and prognostic factors. Ann Thorac Surg. 2005; 80(5): 1841-6.
15)
Raviaro G, Varoli F, Romanelli A, et al. Complications of tracheal sleeve pneumonectomy: personal experience and overview of the literature. J Thorac Cardiovasc Surg. 2001; 121(2): 234-40.
16)
Macchiarini P, Altmayer M, Go T, et al. Technical innovations of carinal resection for nonsmall-cell lung cancer. Ann Thorac Surg. 2006; 82(6): 1989-97.
17)
Yokoi K, Tsuchiya R, Mori T, et al. Results of surgical treatment of lung cancer involving the diaphragm. J Thorac Cardiovasc Surg. 2000; 120(4): 799-805.
18)
Riquet M, Porte H, Chapelier A, et al. Resection of lung cancer invading the diaphragm. J Thorac Cardiovasc Surg. 2000; 120(2): 417-8.
19)
Kawaguchi K, Miyaoka E, Asamura H, et al. Modern surgical results of lung cancer involving neighboring structures: a retrospective analysis of 531 pT3 cases in a Japanese Lung Cancer Registry Study. J Thorac Cardiovasc Surg. 2012; 144(2): 431-7.
20)
Sakakura N, Mori S, Ishiguro F, et al. Subcategorization of resectable non-small cell lung cancer involving neighboring structures. Ann Thorac Surg. 2008; 86(4): 1076-83.
21)
Watanabe S, Asamura H, Miyaoka E, et al. Results of T4 surgical cases in the Japanese Lung Cancer Registry Study: should mediastinal fat tissue invasion really be included in the T4 category? J Thorac Oncol. 2013; 8(6): 759-65.
これまでに行われた最大規模のランダム化比較試験であるAmerican College of Surgery Oncology Group(ACOSOG)Z0030 試験1)では,T1-2N0-1(肺門部リンパ節を除く)症例を対象に系統的リンパ節郭清群とサンプリング群の治療成績が比較検討され,系統的リンパ節郭清群と系統的サンプリング群の生存期間中央値,ならびに無再発5 年生存率はそれぞれ,8.5 年と8.1 年,68%と69%で,系統的リンパ節郭清による有意な治療成績の改善は認められなかった1)。また系統的リンパ節郭清の手術時間はサンプリングに比べ,15 分程度長いにすぎず,術後の合併症発生率や手術関連死亡率にも差がなかった2)。
Darling GE, Allen MS, Decker PA, et al. Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1(less than hilar)non-small cell carcinoma: results of the American College of Surgery Oncology Group Z0030 Trial. J Thorac Cardiovasc Surg. 2011; 141(3): 662-70.
2)
Allen MS, Darling GE, Pechet TT, et al. Morbidity and mortality of major pulmonary resections in patients with early-stage lung cancer: initial results of the randomized, prospective ACOSOG Z0030 trial. Ann Thorac Surg. 2006; 81(3): 1013-9.
3)
Wu Yl, Huang ZF, Wang SY, et al. A randomized trial of systematic nodal dissection in resectable non-small cell lung cancer. Lung Cancer. 2002; 36(1): 1-6.
4)
Izbicki JR, Passlick B, Pantel K, et al. Effectiveness of radical systematic mediastinal lymphadenectomy in patients with resectable non-small cell lung cancer: results of a prospective randomized trial. Ann Surg. 1998; 227(1): 138-44.
5)
Sugi K, Nawata K, Fujita N, et al. Systematic lymph node dissection for clinically diagnosed peripheral non-small-cell lung cancer less than 2 cm in diameter. World J Surg. 1998; 22(3): 290-4.
6)
Wright G, Manser RL, Byrnes G, et al. Surgery for non-small cell lung cancer: systematic review and meta-analy-sis of randomised controlled trials. Thorax. 2006; 61(7): 597-603.
7)
Huang X, Wang J, Chen Q, et al. Mediastinal lymph node dissection versus mediastinal lymph node sampling for early stage non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2014; 9(10): e109979.
8)
Meng D, Zhou Z, Wang Y, et al. Lymphadenectomy for clinical early-stage non-small-cell lung cancer: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2016; 50(4): 597-604.
9)
Mokhles S, Macbeth F, Treasure T, et al. Systematic lymphadenectomy versus sampling of ipsilateral mediastinal lymph-nodes during lobectomy for non-small-cell lung cancer: a systematic review of randomized trials and a meta-analysis. Eur J Cardiothorac Surg. 2017; 51(6): 1149-56.
10)
Hishida T, Miyaoka E, Yokoi K, et al. Lobe-specific nodal dissection for clinical stage Ⅰ and Ⅱ NSCLC: Japanese Multi-Institutional Retrospective Study using a propensity score analysis. J Thorac Oncol. 2016; 11(9): 1529-37.
11)
Okada M, Sakamoto T, Yuki T, et al. Selective mediastinal lymphadenectomy for clinico-surgical stage Ⅰ non-small cell lung cancer. Ann Thorac Surg. 2006; 81(3): 1028-32.
12)
Ishiguro F, Matsuo K, Fukui T, et al. Effect of selective lymph node dissection based on patterns of lobe-specific lymph node metastases on patient outcome in patients with resectable non-small cell lung cancer: a large-scale retrospective cohort study applying a propensity score. J Thorac Cardiovasc Surg. 2010; 139(4): 1001-6.
13)
Maniwa T, Okumura T, Isaka M, et al. Recurrence of mediastinal node cancer after lobe-specific systematic nodal dissection for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2013; 44(1): e59-e64.
Facciolo F, Cardillo G, Lopergolo M, et al. Chest wall invasion in non-small cell lung carcinoma: a rationale for en bloc resection. J Thorac Cardiovasc Surg. 2001; 121(4): 649-56.
2)
Burkhart HM, Allen MS, Nichols FC 3rd, et al. Results of en bloc resection for bronchogenic carcinoma with chest wall invasion. J Thorac Cardiovasc Surg. 2002; 123(4): 670-5.
3)
Matsuoka H, Nishio W, Okada M, et al. Resection of chest wall invasion in patients with non-small cell lung cancer. Eur J Cardiothorac Surg. 2004; 26(6): 1200-4.
4)
Downey RJ, Martini N, Rusch VW, et al. Extent of chest wall invasion and survival in patients with lung cancer. Ann Thorac Surg. 1999; 68(1): 188-93.
5)
Magdeleinat P, Alifano M, Benbrahem C, et al. Surgical treatment of lung cancer invading the chest wall: results and prognostic factors. Ann Thorac Surg. 2001; 71(4): 1094-9.
6)
Doddoli C, D’Journo B, Le Pimpec-Barthes F, et al. Lung cancer invading the chest wall: a plea for en-bloc resection but the need for new treatment strategies. Ann Thorac Surg. 2005; 80(6): 2032-40.
7)
Kawaguchi K, Miyaoka E, Asamura H, et al. Modern surgical results of lung cancer involving neighboring structures: a retrospective analysis of 531 pT3 cases in a Japanese Lung Cancer Registry Study. J Thorac Cardiovasc Surg. 2012; 144(2): 431-7.
8)
Kawaguchi K, Yokoi K, Niwa H, et al. A prospective, multi-institutional phase Ⅱ study of induction chemoradiotherapy followed by surgery in patients with non-small cell lung cancer involving the chest wall(CJLSG0801). Lung Cancer. 2017; 104: 79-84.
9)
Ahmad U, Crabtree TD, Patel AP, et al. Adjuvant chemotherapy is associated with improved survival in locally invasive node negative non-small cell lung cancer. Ann Thorac Surg. 2017; 104(1): 303-7.
10)
Drake JA, Sullivan JL, Weksler B. Adjuvant chemotherapy improves survival in patients with completely resected T3N0 non-small cell lung cancer invading the chest wall. J Thorac Cardiovasc Surg. 2018; 155(4): 1794-802.
11)
Sakakura N, Mori S, Ishiguro F, et al. Subcategorization of resectable non-small cell lung cancer involving neighboring structures. Ann Thorac Surg. 2008; 86(4): 1076-83.
12)
Riquet M, Grand B, Arame A, et al. Lung cancer invading the pericardium: quantum of lymph nodes. Ann Thorac Surg. 2010; 90(6): 1773-7.
Deslauriers J, Grégoire J, Jacques LF, et al. Sleeve lobectomy versus pneumonectomy for lung cancer: a comparative analysis of survival and sites or recurrences. Ann Thorac Surg. 2004; 77(4): 1152-6.
2)
Ludwig C, Stoelben E, Olschewski M, et al. Comparison of morbidity, 30-day mortality, and long-term survival after pneumonectomy and sleeve lobectomy for non-small cell lung carcinoma. Ann Thorac Surg. 2005; 79(3): 968-73.
3)
Venuta F, Ciccone AM, Anile M, et al. Reconstruction of the pulmonary artery for lung cancer: long-term results. J Thorac Cardiovasc Surg. 2009; 138(5): 1185-91.
4)
Berry MF, Worni M, Wang X, et al. Sleeve lobectomy for non-small cell lung cancer with N1 nodal disease does not compromise survival. Ann Thorac Surg. 2014; 97(1): 230-5.
5)
Ma Z, Dong A, Fan J, et al. Does sleeve lobectomy concomitant with or without pulmonary artery reconstruction(double sleeve)have favorable results for non-small cell lung cancer compared with pneumonectomy? A meta-analysis. Eur J Cardiothorac Surg. 2007; 32(1): 20-8.
6)
Zhao LL, Zhou FY, Dai CY, et al. Prognostic analysis of the bronchoplastic and broncho-arterioplastic lobectomy of non-small cell lung cancers-10-year experiences of 161 patients. J Thorac Dis. 2015; 7(12): 2288-99.
7)
Rea F, Marulli G, Schiavon M, et al. A quarter of a century experience with sleeve lobectomy for non-small cell lung cancer. Eur J Cardiothorac Surg. 2008; 34(3): 488-92.
8)
Yamamoto K, Miyamoto Y, Ohsumi A, et al. Sleeve lung resection for lung cancer: analysis according to the type of procedure. J Thorac Cardiovasc Surg. 2008; 136(5): 1349-56.
9)
Park SY, Lee HS, Jang HJ, et al. Wedge bronchoplastic lobectomy for non-small cell lung cancer as an alternative to sleeve lobectomy. J Thorac Cardiovasc Surg. 2012; 143(4): 825-31.
10)
Chen C, Bao F, Zheng H, et al. Local extension at the hilum region is associated with worse long-term survival in stage Ⅰ non-small cell lung cancers. Ann Thorac Surg. 2012; 93(2): 389-96.
11)
Nagayasu T, Yamasaki N, Tsuchiya T, et al. The evolution of bronchoplasty and broncho-angioplasty as treatments for lung cancer: evaluation of 30 years of data from a single institution. Eur J Cardiothorac Surg. 2016; 49(1): 300-6.
12)
Okada M, Nishio W, Sakamoto T, et al. Sleeve segmentectomy for non-small cell lung carcinoma. J Thorac Cardiovasc Surg. 2004; 128(3): 420-4.
13)
Berthet JP, Paradela M, Jimenez MJ, et al. Extended sleeve lobectomy: one more step toward avoiding pneumonectomy in centrally located lung cancer. Ann Thorac Surg. 2013; 96(6): 1988-97.
14)
Gonzalez M, Litzistorf Y, Krueger T, et al. Impact of induction therapy on airway complications after sleeve lobectomy for lung cancer. Ann Thorac Surg. 2013; 96(1): 247-52.
15)
Ohta M, Sawabata N, Maeda H, et al. Efficacy and safety of tracheobronchoplasty after induction therapy for locally advanced lung cancer. J Thorac Cardiovasc Surg. 2003; 125(1): 96-100.
16)
Maurizi G, D’Andrilli A, Anile M, et al. Sleeve lobectomy compared with pneumonectomy after induction therapy for non-small-cell lung cancer. J Thorac Oncol. 2013; 8(5): 637-43.
17)
Bagan P, Berna P, Brian E, et al. Induction chemotherapy before sleeve lobectomy for lung cancer: immediate and long-term results. Ann Thorac Surg. 2009; 88(6): 1732-5.
Detterbeck FC, Bolejack V, Arenberg DA, et al. The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Classification of Lung Cancer with Separate Tumor Nodules in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016; 11(5): 681-92.
2)
Nagai K, Sohara Y, Tsuchiya R, et al. Prognosis of resected non-small cell lung cancer patients with intrapulmonary metastases. J Thorac Oncol. 2007; 2(4): 282-6.
3)
Okumura T, Asamura H, Suzuki K, et al. Intrapulmonary metastasis of non-small cell lung cancer: a prognostic assessment. J Thorac Cardiovasc Surg. 2001; 122(1): 24-8.
4)
Rami-Porta R, Ball D, Crowley J, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the T descriptors in the forthcoming(seventh)edition of the TNM classification for lung cancer. J Thorac Oncol. 2007; 2(7): 593-602.
5)
Ou SH, Zell JA. Validation study of the proposed IASLC staging revisions of the T4 and M non-small cell lung cancer descriptors using data from 23,583 patients in the California Cancer Registry. J Thorac Oncol. 2008; 3(3): 216-27.
6)
Zell JA, Ou SH, Ziogas A, et al. Survival improvements for advanced stage nonbronchioloalveolar carcinoma-type nonsmall cell lung cancer cases with ipsilateral intrapulmonary nodules. Cancer. 2008; 112(1): 136-43.
7)
William WN Jr, Lin HY, Lee JJ, et al. Revisiting stage ⅢB and Ⅳ non-small cell lung cancer: analysis of the surveillance, epidemiology, and end results data. Chest. 2009; 136(3): 701-9.
8)
Okamoto T, Iwata T, Mizobuchi T, et al. Surgical treatment for non-small cell lung cancer with ipsilateral pulmonary metastases. Surg Today. 2013; 43(10): 1123-8.
9)
Detterbeck FC, Franklin WA, Nicholson AG, et al. The IASLC Lung Cancer Staging Project: Background Data and Proposed Criteria to Distinguish Separate Primary Lung Cancers from Metastatic Foci in Patients with Two Lung Tumors in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016; 11(5): 651-65.
Martini N, Melamed MR. Multiple primary lung cancers. J Thorac Cardiovasc Surg. 1975; 70(4): 606-12.
2)
Riquet M, Cazes A, Pfeuty K, et al. Multiple lung cancers prognosis: what about histology? Ann Thorac Surg. 2008; 86(3): 921-6.
3)
Yu-YC, Hsu PK, Yeh YC, et al. Surgical results of synchronous multiple primary lung cancers: similar to the stage-matched solitary primary lung cancers? Ann Thorac Surg. 2013; 96(6): 1966-74.
4)
Jiang L, He J, Shi X, et al. Prognosis of synchronous and metachronous multiple primary lung cancers: systematic review and meta-analysis. Lung Cancer. 2015; 87(3): 303-10.
5)
Leventakos K, Peikert T, Midthun DE, et al. Management of Multifocal Lung Cancer: Results of a Survey. J Thorac Oncol. 2017; 12(9): 1398-402.
6)
Chen K, Chen W, Cai J, et al. Favorable prognosis and high discrepancy of genetic features in surgical patients with multiple primary lung cancers. J Thorac Cardiovasc Surg. 2018; 155(1): 371-79.e1.
7)
Fabian T, Bryant AS, Mouhlas AL, et al. Survival after resection of synchronous non-small cell lung cancer. J Thorac Cardiovasc Surg. 2011; 142(3): 547-53.
8)
Shah AA, Barfield ME, Kelsey CR, et al. Outcomes after surgical management of synchronous bilateral primary lung cancers. Ann Thorac Surg. 2012; 93(4): 1055-60.
9)
Detterbeck FC, Nicholson AG, Franklin WA, et al. The IASLC Lung Cancer Staging Project: Summary of Proposals for Revisions of the Classification of Lung Cancers with Multiple Pulmonary Sites of Involvement in the Forthcoming Eighth Edition of the TNM Classification. J Thorac Oncol. 2016; 11(5): 639-50.
10)
Detterbeck FC, Marom EM, Arenberg DA, et al. The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Application of TNM Staging Rules to Lung Cancer Presenting as Multiple Nodules with Ground Glass or Lepidic Features or a Pneumonic Type of Involvement in the Forthcoming Eighth Edition of the TNM Classification. J Thorac Oncol. 2016; 11(5): 666-80.
11)
Chang YL, Wu CT, Lin SC, et al. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin Cancer Res. 2007; 13(1): 52-8.
12)
Girard N, Ostrovnaya I, Lau C, et al. Genomic and mutational profiling to assess clonal relationships between multiple non-small cell lung cancers. Clin Cancer Res. 2009; 15(16): 5184-90.
13)
Takahashi Y, Shien K, Tomida S, et al. Comparative mutational evaluation of multiple lung cancers by multiplex oncogene mutation analysis. Cancer Sci. 2018; 109(11): 3634-42.
14)
Detterbeck FC, Franklin WA, Nicholson AG, et al. The IASLC Lung Cancer Staging Project: Background Data and Proposed Criteria to Distinguish Separate Primary Lung Cancers from Metastatic Foci in Patients with Two Lung Tumors in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016; 11(5): 651-65.
15)
Nagai K, Sohara Y, Tsuchiya R, et al. Prognosis of resected non-small cell lung cancer patients with intrapulmonary metastases. J Thorac Oncol. 2007; 2(4): 282-6.
16)
Fukuse T, Hirata T, Tanaka F, et al. Prognosis of ipsilateral intrapulmonary metastases in resected nonsmall cell lung cancer. Eur J Cardiothorac Surg. 1997; 12(2): 218-23.
17)
Okumura T, Asamura H, Suzuki K, et al. Intrapulmonary metastasis of non-small cell lung cancer: a prognostic assessment. J Thorac Cardiovasc Surg. 2001; 122(1): 24-8.
18)
Zell JA, Ou SH, Ziogas A, et al. Survival improvements for advanced stage nonbronchioloalveolar carcinoma-type nonsmall cell lung cancer cases with ipsilateral intrapulmonary nodules. Cancer. 2008; 112(1): 136-43.
19)
Detterbeck FC, Bolejack V, Arenberg DA, et al. The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Classification of Lung Cancer with Separate Tumor Nodules in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016; 11(5): 681-92.
Battafarano RJ, Force SD, Meyers BF, et al. Benefits of resection for metachronous lung cancer. J Thorac Cardiovasc Surg. 2004; 127(3): 836-42.
2)
Riquet M, Cazes A, Pfeuty K, et al. Multiple lung cancers prognosis: what about histology? Ann Thorac Surg. 2008; 86(3): 921-6.
3)
Lee BE, Port JL, Stiles BM, et al. TNM stage is the most important determinant of survival in metachronous lung cancer. Ann Thorac Surg. 2009; 88(4): 1100-5.
4)
Zuin A, Andriolo LG, Marulli G, et al. Is lobectomy really more effective than sublobar resection in the surgical treatment of second primary lung cancer? Eur J Cardiothorac Surg. 2013; 44(2): e120-5.
5)
Yang J, Liu M, Fan J, et al. Surgical treatment of metachronous second primary lung cancer. Ann Thorac Surg. 2014; 98(4): 1192-8.
6)
Jiang L, He J, Shi X, et al. Prognosis of synchronous and metachronous multiple primary lung cancers: systematic review and meta-analysis. Lung Cancer. 2015; 87(3): 303-10.
7)
Hattori A, Suzuki K, Takamochi K, et al. Clinical features of multiple lung cancers based on thin-section computed tomography: what are the appropriate surgical strategies for second lung cancers? Surg Today. 2015; 45(2): 189-96.
8)
Hamaji M, Ali SO, Burt BM. A meta-analysis of resected metachronous second non-small cell lung cancer. Ann Thorac Surg. 2015; 99(4): 1470-8.
9)
Yang X, Zhan C, Li M, et al. Lobectomy versus sublobectomy in metachronous second primary lung cancer: a propensity score study. Ann Thorac Surg. 2018; 106(3): 880-7.
10)
van Rens MT, Eijken EJ, Elbers JR, et al. p53 mutation analysis for definite diagnosis of multiple primary lung carcinoma. Cancer. 2002; 94(1): 188-96.
11)
Girard N, Ostrovnaya I, Lau C, et al. Genomic and mutational profiling to assess clonal relationships between multiple non-small cell lung cancers. Clin Cancer Res. 2009; 15(16): 5184-90.
12)
Wu CT, Lin MW, Hsieh MS, et al. New aspects of the clinicopathology and genetic profile of metachronous multiple lung cancers. Ann Surg. 2014; 259(5): 1018-24.
13)
Takahashi Y, Shien K, Tomida S, et al. Comparative mutational evaluation of multiple lung cancers by multiplex oncogene mutation analysis. Cancer Sci. 2018; 109(11): 3634-42.
14)
Creach KM, Bradley JD, Mahasittiwat P, et al. Stereotactic body radiation therapy in the treatment of multiple primary lung cancers. Radiother Oncol. 2012; 104(1): 19-22.
15)
Nishiyama K, Kodama K, Teshima T, et al. Stereotactic body radiotherapy for second pulmonary nodules after operation for an initial lung cancer. Jpn J Clin Oncol. 2015; 45(10): 947-52.
Kirby TJ, Mack MJ, Landreneau RJ, et al. Lobectomy–video-assisted thoracic surgery versus muscle-sparing thoracotomy. A randomized trial. J Thorac Cardiovasc Surg. 1995; 109(5): 997-1002.
2)
Sugi K, Kaneda Y, Esato K. Video-assisted thoracoscopic lobectomy achieves a satisfactory long-term prognosis in patients with clinical stage ⅠA lung cancer. World J Surg. 2000; 24(1): 27-30.
3)
Long H, Tan Q, Luo Q, et al. Thoracoscopic surgery versus thoracotomy for lung cancer: short-term outcomes of a randomized trial. Ann Thorac Surg. 2018; 105(2): 386-92.
4)
Yan TD, Black D, Bannon PG, et al. Systematic review and meta-analysis of randomized and nonrandomized trials on safety and efficacy of video-assisted thoracic surgery lobectomy for early-stage non-small-cell lung cancer. J Clin Oncol. 2009; 27(15): 2553-62.
5)
Cai YX, Fu XN, Xu QZ, et al. Thoracoscopic lobectomy versus open lobectomy in stage Ⅰ non-small cell lung cancer: a meta-analysis. PLoS One. 2013; 8(12): e82366.
6)
Hamaji M, Lee HS, Kawaguchi A, et al. Overall survival following thoracoscopic vs open lobectomy for early-stage non-small cell lung cancer: a meta-analysis. Semin Thorac Cardiovasc Surg. 2017; 29(1): 104-12.
7)
Wang Z, Pang L, Tang J, et al. Video-assisted thoracoscopic surgery versus muscle-sparing thoracotomy for non-small cell lung cancer: a systematic review and meta-analysis. BMC Surg. 2019; 19(1): 144.
8)
Zhang R, Ferguson MK. Video-assisted versus open lobectomy in patients with compromised lung function: a literature review and meta-analysis. PLoS One. 2015; 10(7): e0124512.
9)
Palade E, Passlick B, Osei-Agyemang T, et al. Video-assisted vs open mediastinal lymphadenectomy for stage Ⅰ non-small-cell lung cancer: results of a prospective randomized trial. Eur J Cardiothorac Surg. 2013; 44(2): 244-9.
10)
Bendixen M, Jorgensen OD, Kronborg C, et al. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol. 2016; 17(6): 836-44.
11)
Decaluwe H, Petersen RH, Hansen H, et al; ESTS Minimally Invasive Thoracic Surgery Interest Group(MITIG). Major intraoperative complications during video-assisted thoracoscopic anatomical lung resections: an intention-to-treat analysis. Eur J Cardiothorac Surg. 2015; 48(4): 588-98.
12)
Puri V, Patel A, Majumder K, et al. Intraoperative conversion from video-assisted thoracoscopic surgery lobectomy to open thoracotomy: a study of causes and implications. J Thorac Cardiovasc Surg. 2015; 149(1): 55-61.
13)
Byun CS, Lee S, Kim DJ, et al. Analysis of unexpected conversion to thoracotomy during thoracoscopic lobectomy in lung cancer. Ann Thorac Surg. 2015; 100(3): 968-73.
14)
Okada M, Sakamoto T, Yuki T, et al. Hybrid surgical approach of video-assisted minithoracotomy for lung cancer: significance of direct visualization on quality of surgery. Chest. 2005; 128(4): 2696-701.
15)
Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery, Shimizu H, Okada M, et al. Thoracic and cardiovascular surgeries in Japan during 2017: Annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2020; 68(4): 414-49.
ロボット支援下肺葉切除
1)
Ye X, Xie L, Chen G, et al. Robotic thoracic surgery versus video-assisted thoracic surgery for lung cancer: a meta-analysis. Interact Cardiovasc Thorac Surg. 2015; 21(4): 409-14.
2)
Zhang L, Gao S. Robot-assisted thoracic surgery versus open thoracic surgery for lung cancer: a system review and meta-analysis. Int J Clin Exp Med. 2015; 8(10): 17804-10.
3)
Bao F, Zhang C, Yang Y, et al. Comparison of robotic and video-assisted thoracic surgery for lung cancer: a propensity-matched analysis. J Thorac Dis. 2016; 8(7): 1798-803.
4)
Louie BE, Wilson JL, Kim S, et al. Comparison of Video-Assisted Thoracoscopic Surgery and Robotic Approaches for Clinical Stage Ⅰ and Stage Ⅱ Non-Small Cell Lung Cancer Using The Society of Thoracic Surgeons Database. Ann Thorac Surg. 2016; 102(3): 917-24.
5)
Yang CF, Sun Z, Speicher PJ, et al. Use and outcomes of minimally invasive lobectomy for stage Ⅰ non-small cell lung cancer in the National Cancer Data Base. Ann Thorac Surg. 2016; 101(3): 1037-42.
6)
Rajaram R, Mohanty S, Bentrem DJ, et al. Nationwide assessment of robotic lobectomy for non-small cell lung cancer. Ann Thorac Surg. 2017; 103(4): 1092-100.
7)
Yu Z, Xie Q, Guo L, et al. Perioperative outcomes of robotic surgery for the treatment of lung cancer compared to a conventional video-assisted thoracoscopic surgery(VATS)technique. Oncotarget. 2017; 8(53): 91076-84.
8)
Emmert A, Straube C, Buentzel J, et al. Robotic versus thoracoscopic lung resection: a systematic review and meta-analysis. Medicine(Baltimore). 2017; 96(35): e7633.
9)
O’Sullivan KE, Kreaden US, Hebert AE, et al. A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy. Interact Cardiovasc Thorac Surg. 2019; 28(4): 526-34.
10)
Liang H, Liang W, Zhao L, et al. Robotic versus video-assisted lobectomy/segmentectomy for lung cancer: a meta-analysis. Ann Surg. 2018; 268(2): 254-9.
11)
Jiao W, Zhao Y, Qiu T, et al. Robotic bronchial sleeve lobectomy for central lung tumors: technique and outcome. Ann Thorac Surg. 2019; 108(1): 211-18.
12)
Veronesi G, Park B, Cerfolio R, et al. Robotic resection of stage Ⅲ lung cancer: an international retrospective study. Eur J Cardiothorac Surg. 2018; 54(5): 912-9.
13)
Cerfolio RJ, Ghanim AF, Dylewski M, et al. The long-term survival of robotic lobectomy for non-small cell lung cancer: a multi-institutional study. J Thorac Cardiovasc Surg. 2018; 155(2): 778-86.
14)
Wei S, Chen M, Chen N, et al. Feasibility and safety of robot-assisted thoracic surgery for lung lobectomy in patients with non-small cell lung cancer: a systematic review and meta-analysis. World J Surg Oncol. 2017; 15(1): 98.
15)
Cao C, Cerfolio RJ, Louie BE, et al. Incidence, management, and outcomes of intraoperative catastrophes during robotic pulmonary resection. Ann Thorac Surg. 2019; 108(5): 1498-504.
多くの疫学研究で一貫して喫煙は癌患者の全死因死亡リスクを上昇させると報告されており,米国Surgeon General Report15)は「科学的証拠は癌患者における喫煙と全死因死亡との因果関係を推定するのに十分である」と結論付けている。60 歳以上を対象としたシステマティックレビューでは,非喫煙者に対する統合相対死亡リスクは,喫煙者で1.83(95%CI:1.65-2.03),過去喫煙者で1.34(95%CI:1.28-1.40)と算出された18)。本邦における評価も同様にレベル1 である。
McMurry TL, Stukenborg GJ, Kessler LG, et al. More frequent surveillance following lung cancer resection is not associated with improved survival: a nationally representative cohort study. Ann Surg. 2018; 268(4): 632-39.
2)
Subramanian M, Liu J, Greenberg C, et al. Imaging surveillance for surgically resected stage Ⅰ non-small cell lung cancer: is more always better?. J Thorac Cardiovasc Surg. 2019; 157(3): 1205-17.e2.
3)
Westeel V, Choma D, Clément F, et al. Relevance of an intensive postoperative follow-up after surgery for non-small cell lung cancer. Ann Thorac Surg. 2000; 70(4): 1185-90.
4)
Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer(NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017; 28(suppl_4): iv1-iv21.
5)
Rice D, Kim HW, Sabichi A, et al. The risk of second primary tumors after resection of stage Ⅰ nonsmall cell lung cancer. Ann Thorac Surg. 2003; 76(4): 1001-7.
6)
Okada M, Nishio W, Sakamoto T, et al. Long-term survival and prognostic factors of five-year survivors with complete resection of non-small cell lung carcinoma. J Thorac Cardiovasc Surg. 2003; 126: 558-62.
7)
Martini N, Rusch VW, Bains MS, et al. Factors influencing ten-year survival in resected stages Ⅰ to Ⅲa non-small cell lung cancer. J Thorac Cardiovasc Surg. 1999; 117(1): 32-8.
8)
Yoshida J, Ishii G, Yokose T, et al. Possible delayed cut-end recurrence after limited resection for ground-glass opacity adenocarcinoma, intraoperatively diagnosed as Noguchi type B, in three patients. J Thorac Oncol. 2010; 5(4): 546-50.
9)
Crinò L, Weder W, van Meerbeeck J, et al. Early stage and locally advanced(non-metastatic)non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010; 21 Suppl 5: v103-15.
10)
Colt HG, Murgu SD, Korst RJ, et al. Follow-up and surveillance of the patient with lung cancer after curative-intent therapy: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143:(5 Suppl): e437S-e454S.
11)
Chiu CH, Chern MS, Wu MH, et al. Usefulness of low-dose spiral CT of the chest in regular follow-up of postoperative non-small cell lung cancer patients: preliminary report. J Thorac Cardiovasc Surg. 2003; 125(6): 1300-5.
12)
Nakamura R, Kurishima K, Kobayashi N, et al. Postoperative follow-up for patients with non-small cell lung cancer. Onkologie. 2010; 33(1-2): 14-8.
13)
Cho S, Lee EB. A follow-up of integrated positron emission tomography/computed tomography after curative resection of non-small-cell lung cancer in asymptomatic patients. J Thorac Cardiovasc Surg. 2010; 139(6): 1447-51.
14)
IARC. IARC monographs on the evaluation of carcinogenic risks to humans, vol 100E, personal habits and indoor combustions. Lyon, France: International Agency for Research on Cancer, 2012.
15)
The Health Consequences of Smoking-50 Years of Progress A Report of the Surgeon General. Atlanta, GA: U. S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014.
16)
Wakai K, Inoue M, Mizoue T, et al. Tobacco smoking and lung cancer risk: an evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol. 2006; 36(5): 309-24.
Gellert C, Schöttker B, Brenner H. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch Intern Med. 2012; 172(11): 837-44.
19)
Agostini PJ, Lugg ST, Adams K, et al. Risk factors and short-term outcomes of postoperative pulmonary complications after VATS lobectomy. J Cardiothorac Surg. 2018; 13(1): 28.
20)
Nakagawa K, Kudoh S, Ohe Y, et al. Postmarketing surveillance study of erlotinib in Japanese patients with non-small-cell lung cancer(NSCLC): an interim analysis of 3488 patients(POLARSTAR). J Thorac Oncol. 2012; 7(8): 1296-303.
21)
Gemine RE, Ghosal R, Collier G, et al. Longitudinal study to assess impact of smoking at diagnosis and quitting on 1-year survival for people with non-small cell lung cancer. Lung Cancer. 2019; 129: 1-7.
22)
Tabuchi T, Ito Y, Ioka A, et al. Tobacco smoking and the risk of subsequent primary cancer among cancer survivors: a retrospective cohort study. Ann Oncol. 2013; 24(10): 2699-704.
23)
Kawahara M, Ushijima S, Kamimori T, et al. Second primary tumours in more than 2-year disease-free survivors of small-cell lung cancer in Japan: the role of smoking cessation. Br J Cancer. 1998; 78(3): 409-12.
Yoon JY, Sigel K, Martin J, et al. Evaluation of the prognostic significance of TNM staging guidelines in lung carcinoid tumors. J Thorac Oncol. 2019; 14(2): 184-92.
2)
Yendamuri S, Gold D, Jayaprakash V, et al. Is sublobar resection sufficient for carcinoid tumors? Ann Thorac Surg. 2011; 92(5): 1774-9.
3)
Fox M, Van Berkel V, Bousamra M 2nd, et al. Surgical management of pulmonary carcinoid tumors: sublobar resection versus lobectomy. Am J Surg. 2013; 205(2): 200-8.
4)
Filosso PL, Guerrera F, Falco NR, et al. Anatomical resections are superior to wedge resections for overall survival in patients with Stage 1 typical carcinoids. Eur J Cardiothorac Surg. 2019; 55(2): 273-9.
5)
Cañizares MA, Matilla JM, Cueto A, et al; EMETNE-SEPAR Members. Atypical carcinoid tumours of the lung: prognostic factors and patterns of recurrence. Thorax. 2014; 69(7): 648-53.
6)
Caplin ME, Baudin E, Ferolla P, et al; ENETS consensus conference participants. Pulmonary neuroendocrine(carcinoid)tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015; 26(8): 1604-20.
7)
Filosso PL, Rena O, Guerrera F, et al; ESTS NETs-WG Steering Committee. Clinical management of atypical carcinoid and large-cell neuroendocrine carcinoma: a multicentre study on behalf of the European Association of Thoracic Surgeons(ESTS)Neuroendocrine Tumours of the Lung Working Group. Eur J Cardiothorac Surg. 2015; 48(1): 55-64.
8)
Steuer CE, Behera M, Kim S, et al. Atypical carcinoid tumor of the lung: a Surveillance, Epidemiology, and End Results Database Analysis. J Thorac Oncol. 2015; 10(3): 479-85.
9)
Raz DJ, Nelson RA, Grannis FW, et al. Natural history of typical pulmonary carcinoid tumors: a comparison of nonsurgical and surgical treatment. Chest. 2015; 147(4): 1111-7.
10)
Brokx HA, Paul MA, Postmus PE, et al. Long-term follow-up after first-line bronchoscopic therapy in patients with bronchial carcinoids. Thorax. 2015; 70(5): 468-72.
11)
Yousem SA, Hochholzer L. Mucoepidermoid tumors of the lung. Cancer. 1987; 60(6): 1346-52.
12)
Qin BD, Jiao XD, Liu K, et al. Clinical, pathological and treatment factors associated with the survival of patients with primary pulmonary salivary gland-type tumors. Lung Cancer. 2018; 126: 174-81.
13)
Resio BJ, Chiu AS, Hoag J, et al. Primary salivary type lung cancers in the National Cancer Database. Ann Thorac Surg. 2018; 105(6): 1633-9.
14)
Regnard JF, Fourquier P, Levasseur P. Results and prognostic factors in resections of primary tracheal tumors: a multicenter retrospective study. The French Society of Cardiovascular Surgery. J Thorac Cardiovasc Surg. 1996; 111(4): 808-13.
15)
Maziak DE, Todd TR, Keshavjee SH, et al. Adenoid cystic carcinoma of the airway: thirty-two-year experience. J Thorac Cardiovasc Surg. 1996; 112(6): 1522-31.
16)
Wang Y, Cai S, Gao S, et al. Tracheobronchial adenoid cystic carcinoma: 50-year experience at the National Cancer Center, China. Ann Thorac Surg. 2019; 108(3): 873-82.
以上より,中心型早期肺癌,特に腫瘍径1.0 cm 以下に対してはPDT を推奨する。エビデンスの強さはC,また総合的評価では行うよう強く推奨(1 で推奨)できると判断した。下記に,推奨度決定のために行われた投票結果を記載する。
引用文献
1)
Maziak DE, Markman BR, MacKay JA, et al; Cancer Care Ontario Practice Guidelines Initiative Lung Cancer Disease Site Group. Photodynamic therapy in nonsmall cell lung cancer: a systematic review. Ann Thorac Surg. 2004; 77(4): 1484-91.
2)
Wisnivesky JP, Yung RC, Mathur PN, et al. Diagnosis and treatment of bronchial intraepithelial neoplasia and early lung cancer of the central airways: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143(5 Suppl): e263S-e277S.
3)
Du Rand IA, Barber PV, Goldring J, et al; British Thoracic Society Interventional Bronchoscopy Guideline Group. British Thoracic Society guideline for advanced diagnostic and therapeutic flexible bronchoscopy in adults. Thorax. 2011; 66 Suppl 3: iii1-21.
4)
Mathur PN, Edell E, Sutedja T, et al; American College of Chest Physicians. Treatment of early stage non-small cell lung cancer. Chest. 2003; 123(1 Suppl): 176S-180S.
5)
Kato H, Okunaka T, Shimatani H. Photodynamic therapy for early stage bronchogenic carcinoma. J Clin Laser Med Surg. 1996; 14(5): 235-8.
6)
Furuse K, Fukuoka M, Kato H, et al. A prospective phase Ⅱ study on photodynamic therapy with photofrin Ⅱ for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol. 1993; 11(10): 1852-7.
7)
Kato H, Furukawa K, Sato M, et al. Phase Ⅱ clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003; 42(1): 103-11.
8)
Edell ES, Cortese DA. Photodynamic therapy in the management of early superficial squamous cell carcinoma as an alternative to surgical resection. Chest. 1992; 102(5): 1319-22.
9)
Ali AH, Takizawa H, Kondo K, et al. Follow-up using fluorescence bronchoscopy for the patients with photodynamic therapy treated early lung cancer. J Med Invest. 2011; 58(1-2): 46-55.
10)
Usuda J, Ichinose S, Ishizumi T, et al. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res. 2010; 16(7): 2198-204.
11)
Usuda J, Ichinose S, Ishizumi T, et al. Management of multiple primary lung cancer in patients with centrally located early cancer lesions. J Thorac Oncol. 2010; 5(1): 62-8.
12)
Endo C, Miyamoto A, Sakurada A, et al. Results of long-term follow-up of photodynamic therapy for roentgenographically occult bronchogenic squamous cell carcinoma. Chest. 2009; 136(2): 369-75.
13)
Corti L, Toniolo L, Boso C, et al. Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg Med. 2007; 39(5): 394-402.
14)
Usuda J, Tsutsui H, Honda H, et al. Photodynamic therapy for lung cancers based on novel photodynamic diagnosis using talaporfin sodium(NPe6)and autofluorescence bronchoscopy. Lung Cancer. 2007; 58(3): 317-23.
15)
Moghissi K, Dixon K, Thorpe JA, et al. Photodynamic therapy(PDT)in early central lung cancer: a treatment option for patients ineligible for surgical resection. Thorax. 2007; 62(5): 391-5.
16)
Furukawa K, Kato H, Konaka C, et al. Locally recurrent central-type early stage lung cancer <1.0 cm in diameter after complete remission by photodynamic therapy. Chest. 2005; 128(5): 3269-75.
17)
Kato H. Photodynamic therapy for lung cancer–a review of 19 years’ experience. J Photochem Photobiol B. 1998; 42(2): 96-9.
18)
Edell ES, Cortese DA. Bronchoscopic phototherapy with hematoporphyrin derivative for treatment of localized bronchogenic carcinoma: a 5-year experience. Mayo Clin Proc. 1987; 62(1): 8-14.
Ragazzi G, Cattaneo GM, Fiorino C, et al. Use of dose-volume histograms and biophysical models to compare 2D and 3D irradiation techniques for non-small cell lung cancer. Br J Radiol. 1999; 72(855): 279-88.
2)
Schraube P, von Kampen M, Oetzel D, et al. The impact of 3-D radiotherapy planning after a pneumonectomy compared to a conventional treatment set-up. Radiother Oncol. 1995; 37(1): 65-70.
3)
DiBiase SJ, Werner-Wasik M, Croce R, et al. Standard off-cord lung oblique fields do not include the entire mediastinum: a computed tomography simulator study. Am J Clin Oncol. 2000; 23(3): 249-52.
4)
Chen AB, Neville BA, Sher DJ, et al. Survival outcomes after radiation therapy for stage III non-small-cell lung cancer after adoption of computed tomography-based simulation. J Clin Oncol. 2011; 29(17): 2305-11.
5)
Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer(NSCLC). Int J Radiat Oncol Biol Phys. 1999; 45(2): 323-9.
6)
Tsujino K, Hirota S, Endo M, et al. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2003; 55(1): 110-5.
7)
Hernando ML, Marks LB, Bentel GC, et al. Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys. 2001; 51(3): 650-9.
8)
Fay M, Tan A, Fisher R, et al. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005; 61(5): 1355-63.
9)
Yom SS, Liao Z, Liu HH, et al. Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 68(1): 94-102.
10)
Rose J, Rodrigues G, Yaremko B, et al. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy. Radiother Oncol. 2009; 91(3): 282-7.
11)
Pan Y, Brink C, Knap M, et al. Acute esophagitis for patients with local-regional advanced non small cell lung cancer treated with concurrent chemoradiotherapy. Radiother Oncol. 2016; 118(3): 465-70.
12)
Ming X, Feng Y, Yang C, et al. Radiation-induced heart disease in lung cancer radiotherapy: A dosimetric update. Medicine(Baltimore). 2016; 95(41): e5051.
13)
Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic Int J Radiat Oncol Biol Phys. 2010; 76(3 Suppl): S10-9.
14)
Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J Clin Oncol. 2017; 35(1): 56-62.
15)
Peng J, Pond G, Donovan E, et al. A comparison of radiation techniques in patients treated with concurrent chemoradiation for stage Ⅲ non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2020; 106(5): 985-92.
16)
Underberg RW, Lagerwaard FJ, Slotman BJ, et al. Benefit of respiration-gated stereotactic radiotherapy for stage Ⅰ lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys. 2005; 62(2): 554-60.
17)
Giraud P, Morvan E, Claude L, et al. Respiratory gating techniques for optimization of lung cancer radiotherapy. J Thorac Oncol. 2011; 6(12): 2058-68.
18)
Cole AJ, Hanna GG, Jain S, et al. Motion management for radical radiotherapy in non-small cell lung cancer. Clin Oncol(R Coll Radiol). 2014; 26(2): 67-80.
Yegya-Raman N, Kim S, Deek MP, et al. Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in unresectable non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2018; 101(5): 1104-12.
21)
Kilburn JM, Soike MH, Lucas JT, et al. Image guided radiation therapy may result in improved local control in locally advanced lung cancer patients. Pract Radiat Oncol. 2016; 6(3): e73-80.
White JE, Chen T, McCracken J, et al. The influence of radiation therapy quality control on survival, response and sites of relapse in oat cell carcinoma of the lung: preliminary report of a Southwest Oncology Group study. Cancer. 1982; 50(6): 1084-90.
26)
Schaake-Koning C, Kirkpatrick A, Kröger R, et al. The need for immediate monitoring of treatment parameters and uniform assessment of patient data in clinical trials. A quality control study of the EORTC Radiotherapy and Lung Cancer Cooperative Groups. Eur J Cancer. 1991; 27(5): 615-9.
27)
Wallner PE, Lustig RA, Pajak TF, et al. Impact of initial quality control review on study outcome in lung and head/neck cancer studies–review of the Radiation Therapy Oncology Group experience. Int J Radiat Oncol Biol Phys. 1989; 17(4): 893-900.
28)
Groom N, Wilson E, Lyn E, et al. Is pre-trial quality assurance necessary? Experiences of the CONVERT phase Ⅲ randomized trial for good performance status patients with limited-stage small-cell lung cancer. Br J Radiol. 2014; 87(1037): 20130653.
29)
Brade AM, Wenz F, Koppe F, et al. Radiation therapy quality assurance(RTQA)of concurrent chemoradiation therapy for locally advanced non-small cell lung cancer in the PROCLAIM phase 3 trial. Int J Radiat Oncol Biol Phys. 2018; 101(4): 927-34.
NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet. 2014; 383(9928): 1561-71.
2)
NSCLC Meta-analyses Collaborative Group; Arriagada R, Auperin A, et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet. 2010; 375(9722): 1267-77.
3)
Hamada C, Tanaka F, Ohta M, et al. Meta-analysis of postoperative adjuvant chemotherapy with tegafur-uracil in non-small-cell lung cancer. J Clin Oncol. 2005; 23(22): 4999-5006
4)
Albain KS, Swann RS, Rusch VW, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage Ⅲ non-small-cell lung cancer: a phase Ⅲ randomised controlled trial. Lancet. 2009; 374(9687): 379-86.
5)
Eberhardt WE, Pöttgen C, Gauler TC, et al. Phase Ⅲ study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage ⅢA(N2)and selected ⅢB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy(ESPATUE). J Clin Oncol. 2015; 33(35): 4194-201.
6)
van Meerbeeck JP, Kramer GW, Van Schil PE, et al. Randomized controlled trial of resection versus radiotherapy after induction chemotherapy in stage ⅢA-N2 non-small-cell lung cancer. J Natl Cancer Inst. 2007; 99(6): 442-50.
7)
Katakami N, Tada H, Mitsudomi T, et al. A phase 3 study of induction treatment with concurrent chemoradiotherapy versus chemotherapy before surgery in patients with pathologically confirmed N2 stage ⅢA nonsmall cell lung cancer(WJTOG9903). Cancer. 2012; 118(24): 6126-35.
8)
Pless M, Stupp R, Ris HB, et al. Induction chemoradiation in stage ⅢA/N2 non-small-cell lung cancer: a phase 3 randomised trial. Lancet. 2015; 386(9998): 1049-56.
9)
PORT Meta-analysis Trialists Group. Postoperative radiotherapy for non-small cell lung cancer. Cochrane Database Syst Rev. 2005;(2): CD002142.
NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet. 2014; 383(9928): 1561-71.
2)
Scagliotti GV, Pastorino U, Vansteenkiste JF, et al. Randomized phase Ⅲ study of surgery alone or surgery plus preoperative cisplatin and gemcitabine in stages ⅠB to ⅢA non-small-cell lung cancer. J Clin Oncol. 2012; 30(2): 172-8.
3)
Felip E, Rosell R, Maestre JA, et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. J Clin Oncol. 2010; 28(19): 3138-45.
4)
Lim E, Harris G, Patel A, et al. Preoperative versus postoperative chemotherapy in patients with resectable non-small cell lung cancer: systematic review and indirect comparison meta-analysis of randomized trials. J Thorac Oncol. 2009; 4(11): 1380-8.
5)
Albain KS, Swann RS, Rusch VW, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage Ⅲ non-small-cell lung cancer: a phase Ⅲ randomised controlled trial. Lancet. 2009; 374(9687): 379-86.
6)
Thomas M, Rübe C, Hoffknecht P, et al. Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage Ⅲ non-small-cell lung cancer. Lancet Oncol. 2008; 9(7): 636-48.
7)
Pless M, Stupp R, Ris HB, et al. Induction chemoradiation in stage ⅢA/N2 non-small-cell lung cancer: a phase 3 randomised trial. Lancet. 2015; 386(9998): 1049-56.
8)
Katakami N, Tada H, Mitsudomi T, et al. A phase 3 study of induction treatment with concurrent chemoradiotherapy versus chemotherapy before surgery in patients with pathologically confirmed N2 stage ⅢA nonsmall cell lung cancer(WJTOG9903). Cancer. 2012; 118(24): 6126-35.
9)
Wada H, Hitomi S, Teramatsu T. Adjuvant chemotherapy after complete resection in non-small-cell lung cancer. West Japan Study Group for Lung Cancer Surgery. J Clin Oncol. 1996; 14(4): 1048-54.
10)
Kato H, Ichinose Y, Ohta M, et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med. 2004; 350(17): 1713-21.
11)
Hamada C, Tanaka F, Ohta M, et al. Meta-analysis of postoperative adjuvant chemotherapy with tegafur-uracil in non-small-cell lung cancer. J Clin Oncol. 2005; 23(22): 4999-5006.
12)
Hamada C, Tsuboi M, Ohta M, et al. Effect of postoperative adjuvant chemotherapy with tegafur-uracil on survival in patients with stage ⅠA non-small cell lung cancer: an exploratory analysis from a meta-analysis of six randomized controlled trials. J Thorac Oncol. 2009; 4(12): 1511-6.
13)
Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ. 1995; 311(7010): 899-909.
14)
Arriagada R, Bergman B, Dunant A, et al. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med. 2004; 350(4): 351-60.
15)
Winton T, Livingston R, Johnson D, et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med. 2005; 352(25): 2589-97.
16)
Douillard JY, Rosell R, De Lena, et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage ⅠB-ⅢA non-small-cell lung cancer(Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol. 2006; 7(9): 719-27.
17)
Arriagada R, Dunant A, Pignon JP, et al. Long-term results of the international adjuvant lung cancer trial evaluating adjuvant Cisplatin-based chemotherapy in resected lung cancer. J Clin Oncol. 2010; 28(1): 35-42.
18)
Butts CA, Ding K, Seymour L, et al. Randomized phase Ⅲ trial of vinorelbine plus cisplatin compared with observation in completely resected stage ⅠB and Ⅱ non-small-cell lung cancer: updated survival analysis of JBR-10. J Clin Oncol. 2010; 28(1): 29-34.
19)
Scagliotti GV, Fossati R, Torri V, et al. Randomized study of adjuvant chemotherapy for completely resected stage Ⅰ, Ⅱ, or ⅢA non-small-cell Lung cancer. J Natl Cancer Inst. 2003; 95(19): 1453-61.
20)
Waller D, Peake MD, Stephens RJ, et al. Chemotherapy for patients with non-small cell lung cancer: the surgical setting of the Big Lung Trial. Eur J Cardiothorac Surg. 2004; 26(1): 173-82.
21)
Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008; 26(21): 3552-9.
22)
Douillard JY, Tribodet H, Aubert D, et al. Adjuvant cisplatin and vinorelbine for completely resected non-small cell lung cancer: subgroup analysis of the Lung Adjuvant Cisplatin Evaluation. J Thorac Oncol. 2010; 5(2): 220-8.
23)
Arriagada R, Auperin A, Burdett S, et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet. 2010; 375(9722): 1267-77.
24)
Kenmotsu H, Yamamoto N, Yamanaka T, et al. Randomized phase III study of pemetrexed plus cisplatin versus vinorelbine plus cisplatin for completely resected stage II to IIIA nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020; 38(19): 2187-96.
25)
Kelly K, Altorki NK, Eberhardt WE, et al. Adjuvant erlotinib versus placebo in patients with stage IB-IIIA non-small-cell lung cancer(RADIANT): a randomized, double-blind, phase III trial. J Clin Oncol. 2015; 33(34): 4007-14.
26)
Wu YL, Tsuboi M, He J, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2020; 383(18): 1711-23.
27)
Zhong WZ, Wang Q, Mao WM, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA(N1-N2)EGFR-mutant NSCLC(ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 2018; 19(1): 139-48.
28)
Zhong WZ, Wang Q, Mao WM, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA(N1-N2)EGFR-mutant NSCLC: Final overall survival analysis of CTONG1104 phase III trial. J Clin Oncol. 2021; 39(7): 713-22.
Douillard JY, Rosell R, De Lena M, et al. Impact of postoperative radiation therapy on survival in patients with complete resection and stage Ⅰ, Ⅱ, or ⅢA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association(ANITA)Randomized Trial. Int J Radiat Oncol Biol Phys. 2008; 72(3): 695-701.
4)
Shen WY, Ji J, Zuo YS, et al. Comparison of efficacy for postoperative chemotherapy and concurrent radiochemotherapy in patients with ⅢA-pN2 non-small cell lung cancer: an early closed randomized controlled trial. Radiother Oncol. 2014; 110(1): 120-5.
a. 肺葉切除可能なⅠ-Ⅱ期非小細胞肺癌で手術を希望しない場合は,根治的放射線治療を行うよう推奨する。
〔推奨の強さ:1,合意率:83%〕
エビデンスの強さC
b. 外科切除が可能であるが肺葉以上の切除が不可能なⅠ-Ⅱ期非小細胞肺癌患者には,根治的放射線治療を行うことを提案する。
〔推奨の強さ:2,合意率:91%〕
解説
a. 肺葉切除可能な臨床病期Ⅰ-Ⅱ期非小細胞肺癌に対して,根治的放射線治療(主にSBRT)と肺葉切除をランダムに比較した臨床試験は報告されていない。完遂不能であったランダム化比較試験の統合解析や傾向スコアを用いたSBRT と肺葉切除との比較が報告されているが,一定の見解を得るには至っていない7)~10)。標準治療が肺葉切除であることを十分に説明したうえで,手術自体を希望しない場合には,その根治療法として,手術不可能な対象に対する場合と同様に放射線治療が選択肢となり得る。比較試験ではないものの,このような対象に対する複数の報告があるため,エビデンスの強さはC であるが,総合的評価では行うよう強く推奨(1 で推奨)できると判断した。下記に,推奨度決定のために行われた投票結果を記載する。
b. 肺葉切除不能な臨床病期Ⅰ-Ⅱ期非小細胞肺癌に対しては,縮小手術(区域切除または楔状切除)と根治的放射線治療(主にSBRT)が考慮される。傾向スコアを用いた縮小手術とSBRT との53 例の比較では,5 年生存率が縮小手術で55.6%,SBRT で40.4%と,縮小手術で良好な傾向ではあるものの有意差は認めず(P=0.124)11),両者で治療成績に有意な差を認めなかったという別の報告もある12)。現状で,縮小手術とSBRT をランダムに比較した臨床試験は報告されていないが,このような対象に関する複数の報告があることから,エビデンスの強さはC とした。肺葉切除不能の場合は縮小手術と同様にSBRT を中心とした根治的放射線治療を考慮してもよく,総合的評価では行うよう弱く推奨(2で推奨)できると判断した。下記に,推奨度決定のために行われた投票結果を記載する。
Rowell NP, Williams CJ. Radical radiotherapy for stage Ⅰ/Ⅱ non-small cell lung cancer in patients not sufficiently fit for or declining surgery(medically inoperable): a systematic review. Thorax. 2001; 56(8): 628-38.
2)
Sibley GS. Radiotherapy for patients with medically inoperable Stage Ⅰ nonsmall cell lung carcinoma: smaller volumes and higher doses–a review. Cancer. 1998; 82(3): 433-8.
3)
Qiao X, Tullgren O, Lax I, et al. The role of radiotherapy in treatment of stage Ⅰ non-small cell lung cancer. Lung Cancer. 2003; 41(1): 1-11.
4)
Morita K, Fuwa N, Suzuki Y, et al. Radical radiotherapy for medically inoperable non-small cell lung cancer in clinical stage Ⅰ : a retrospective analysis of 149 patients. Radiother Oncol. 1997; 42(1): 31-6.
5)
Dudani S, Zhu X, Yokom DW, et al. Radical Treatment of Stage Ⅱ non-small-cell lung cancer with nonsurgical approaches: a multi-institution report of outcomes. Clin Lung Cancer. 2018; 19(1): e11-e18.
6)
Tyldesley S, Boyd C, Schulze K, et al. Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach. Int J Radiat Oncol Biol Phys. 2001; 49(4): 973-85.
7)
Chang JY, Senan S, Paul MA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage Ⅰ non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015; 16(6): 630-7.
8)
Hamaji M, Chen F, Matsuo Y, et al. Video-assisted thoracoscopic lobectomy versus stereotactic radiotherapy for stage Ⅰ lung cancer. Ann Thorac Surg. 2015; 99(4): 1122-9.
9)
Shirvani SM, Jiang J, Chang JY, et al. Lobectomy, sublobar resection, and stereotactic ablative radiotherapy for early-stage non-small cell lung cancers in the elderly. JAMA Surg. 2014; 149(12): 1244-53.
10)
Eba J, Nakamura K, Mizusawa J, et al. Stereotactic body radiotherapy versus lobectomy for operable clinical stage ⅠA lung adenocarcinoma: comparison of survival outcomes in two clinical trials with propensity score analysis(JCOG1313-A). Jpn J Clin Oncol. 2016; 46(8): 748-53.
11)
Matsuo Y, Chen F, Hamaji M, et al. Comparison of long-term survival outcomes between stereotactic body radiotherapy and sublobar resection for stage Ⅰ non-small-cell lung cancer in patients at high risk for lobectomy: A propensity score matching analysis. Eur J Cancer. 2014; 50(17): 2932-8.
12)
Port JL, Parashar B, Osakwe N, et al. A propensity-matched analysis of wedge resection and stereotactic body radiotherapy for early stage lung cancer. Ann Thorac Surg. 2014; 98(4): 1152-9.
13)
Inoue T, Katoh N, Ito YM, et al. Stereotactic body radiotherapy to treat small lung lesions clinically diagnosed as primary lung cancer by radiological examination: A prospective observational study. Lung Cancer. 2018; 122: 107-12.
14)
IJsseldijk MA, Shoni M, Siegert C, et al. Survival after stereotactic body radiation therapy for clinically diagnosed or biopsy-proven early-stage NSCLC: a systematic review and meta-analysis. J Thorac Oncol. 2019; 14(4): 583-95.
15)
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017; 284(1): 228-43.
16)
de Hoop B, van Ginneken B, Gietema H, et al. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology. 2012; 265(2): 611-6.
17)
Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med. 1997; 157(8): 849-55.
18)
Nagata Y, Takayama K, Matsuo Y, et al. Clinical outcomes of a phase Ⅰ/Ⅱ study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005; 63(5): 1427-31.
19)
Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy(HypoFXSRT)for stage Ⅰ non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007; 2(7 Suppl 3): S94-100.
20)
Nagata Y, Hiraoka M, Shibata T, et al. Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan Clinical Oncology Group Study JCOG0403. Int J Radiat Oncol Biol Phys. 2015; 93(5): 989-96.
21)
Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010; 303(11): 1070-6.
22)
Senthi S, Haasbeek CJ, Slotman BJ, et al. Outcomes of stereotactic ablative radiotherapy for central lung tumours: a systematic review. Radiother Oncol. 2013; 106(3): 276-82.
23)
Nyman J, Hallqvist A, Lund JÅ, et al. SPACE – A randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage Ⅰ NSCLC. Radiother Oncol. 2016; 121(1): 1-8.
24)
Ball D, Mai GT, Vinod S, et al; TROG 09.02 CHISEL investigators. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer(TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol. 2019 Apr; 20(4): 494-503.
25)
Miyamoto T, Baba M, Yamamoto N, et al. Curative treatment of Stage Ⅰ non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int J Radiat Oncol Biol Phys. 2007; 67(3): 750-8.
26)
Nihei K, Ogino T, Ishikura S, et al. High-dose proton beam therapy for Stage Ⅰ non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006; 65(1): 107-11.
27)
Ohnishi K, Harada H, Nakamura N, et al. P2.05-005 proton beam therapy for early stage lung cancer: a multi-institutional retrospective study in Japan. J Thorac Oncol. 2017; 12(11): S2405.
28)
Shioyama Y, Yamamoto N, Saitoh JI, et al. Multi-institutional retrospective study of carbon ion radiation therapy for stage Ⅰ non-small cell lung cancer: Japan Carbon Ion Radiation Oncology Study Group. Int J Radiat Oncol. 2016; 96(2): S10.
29)
Grutters JP, Kessels AG, Pijls-Johannesma M, et al. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010; 95(1): 32-40.
Dillman RO, Herndon J, Seagren SL, et al. Improved survival in stage Ⅲ non-small-cell lung cancer: seven-year follow-up of cancer and leukemia group B(CALGB)8433 trial. J Natl Cancer Inst. 1996; 88(17): 1210-5.
2)
Sause WT, Scott C, Taylor S, et al. Radiation Therapy Oncology Group(RTOG)88-08 and Eastern Cooperative Oncology Group(ECOG)4588: preliminary results of a phase Ⅲ trial in regionally advanced, unresectable non-small-cell lung cancer. J Natl Cancer Inst. 1995; 87(3): 198-205.
3)
Pritchard RS, Anthony SP. Chemotherapy plus radiotherapy compared with radiotherapy alone in the treatment of locally advanced, unresectable, non-small-cell lung cancer. A meta-analysis. Ann Intern Med. 1996; 125(9): 723-9.
4)
Marino P, Preatoni A, Cantoni A. Randomized trials of radiotherapy alone versus combined chemotherapy and radiotherapy in stages Ⅲa and Ⅲb nonsmall cell lung cancer. A meta-analysis. Cancer. 1995; 76(4): 593-601.
5)
Furuse K, Fukuoka M, Kawahara M, et al. Phase Ⅲ study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage Ⅲ non-small-cell lung cancer. J Clin Oncol. 1999; 17(9): 2692-9.
6)
Curran WJ Jr, Paulus R, Langer CJ, et al. Sequential vs. concurrent chemoradiation for stage Ⅲ non-small cell lung cancer: randomized phase Ⅲ trial RTOG 9410. J Natl Cancer Inst. 2011; 103(19): 1452-60.
7)
Yamamoto N, Nakagawa K, Nishimura Y, et al. Phase Ⅲ study comparing second-and third-generation regimens with concurrent thoracic radiotherapy in patients with unresectable stage Ⅲ non-small-cell lung cancer: West Japan Thoracic Oncology Group WJTOG0105. J Clin Oncol. 2010; 28(23): 3739-45.
8)
Segawa Y, Kiura K, Takigawa N, et al. Phase Ⅲ trial comparing docetaxel and cisplatin combination chemotherapy with mitomycin, vindesine, and cisplatin combination chemotherapy with concurrent thoracic radiotherapy in locally advanced non-small-cell lung cancer: OLCSG 0007. J Clin Oncol. 2010; 28(20): 3299-306.
9)
Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage ⅢA or ⅢB non-small-cell lung cancer(RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015; 16(2): 187-99.
10)
Bradley JD, Hu C, Komaki RR, et al. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2020; 38(7): 706-14.
11)
Antonia SJ, Villegas A, Daniel D, et al; PACIFIC Investigators. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer. N Engl J Med. 2017; 377(20): 1919-29.
12)
Antonia SJ, Villegas A, Daniel D, et al; PACIFIC Investigators. Overall survival with durvalumab after chemoradiotherapy in stage Ⅲ NSCLC. N Engl J Med. 2018; 379(24): 2342-50.
13)
Martinod E, D’Audiffret A, Thomas P, et al. Management of superior sulcus tumors: experience with 139 cases treated by surgical resection. Ann Thorac Surg. 2002; 73(5): 1534-9.
14)
Rusch VW, Parekh KR, Leon L, et al. Factors determining outcome after surgical resection of T3 and T4 lung cancers of the superior sulcus. J Thorac Cardiovasc Surg. 2000; 119(6): 1147-53.
15)
Alifano M, D’Aiuto M, Magdeleinat P, et al. Surgical treatment of superior sulcus tumors: results and prognostic factors. Chest. 2003; 124(3): 996-1003.
16)
Paulson DL. Carcinomas in the superior pulmonary sulcus. J Thorac Cardiovasc Surg. 1975; 70(6): 1095-104.
Pritchard RS, Anthony SP. Chemotherapy plus radiotherapy compared with radiotherapy alone in the treatment of locally advanced, unresectable, non-small-cell lung cancer. A meta-analysis. Ann Intern Med. 1996; 125(9): 723-9.
2)
Marino P, Preatoni A, Cantoni A. Randomized trials of radiotherapy alone versus combined chemotherapy and radiotherapy in stages Ⅲa and Ⅲb nonsmall cell lung cancer. A meta-analysis. Cancer. 1995; 76(4): 593-601.
3)
Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ. 1995; 311(7010): 899-909.
4)
Atagi S, Kawahara M, Yokoyama A, et al. Thoracic radiotherapy with or without daily low-dose carboplatin in elderly patients with non-small-cell lung cancer: a randomised, controlled, phase 3 trial by the Japan Clinical Oncology Group(JCOG0301). Lancet Oncol. 2012; 13(7): 671-8.
5)
Furuse K, Fukuoka M, Kawahara M, et al. Phase Ⅲ study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage Ⅲ non-small-cell lung cancer. J Clin Oncol. 1999; 17(9): 2692-9.
6)
Curran WJ Jr, Paulus R, Langer CJ, et al. Sequential vs. concurrent chemoradiation for stage Ⅲ non-small cell lung cancer: randomized phase Ⅲ trial RTOG 9410. J Natl Cancer Inst. 2011; 103(19): 1452-60.
7)
Aupérin A, Le Péchoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010; 28(13): 2181-90.
8)
Yamamoto N, Nakagawa K, Nishimura Y, et al. Phase Ⅲ study comparing second- and third-generation regimens with concurrent thoracic radiotherapy in patients with unresectable stage Ⅲ non-small-cell lung cancer: West Japan Thoracic Oncology Group WJTOG0105. J Clin Oncol. 2010; 28(23): 3739-45.
9)
Segawa Y, Kiura K, Takigawa N, et al. Phase Ⅲ trial comparing docetaxel and cisplatin combination chemotherapy with mitomycin, vindesine, and cisplatin combination chemotherapy with concurrent thoracic radiotherapy in locally advanced non-small-cell lung cancer: OLCSG 0007. J Clin Oncol. 2010; 28(20): 3299-306.
10)
Liang J, Bi N, Wu S, et al. Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage Ⅲ non-small cell lung cancer: a multicenter randomized phase Ⅲ trial. Ann Oncol. 2017; 28(4): 777-83.
11)
Senan S, Brade A, Wang LH, et al. PROCLAIM: randomized phase Ⅲ trial of pemetrexed-cisplatin or etoposide-cisplatin plus thoracic radiation therapy followed by consolidation chemotherapy in locally advanced nonsquamous non-small-cell lung cancer. J Clin Oncol. 2016; 34(9): 953-62.
12)
Hanna N, Neubauer M, Yiannoutsos C, et al. Phase Ⅲ study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage Ⅲ non-small-cell lung cancer: the Hoosier Oncology Group and U. S. Oncology. J Clin Oncol. 2008; 26(35): 5755-60.
13)
Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer. N Engl J Med. 2017; 377(20): 1919-29.
14)
Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage Ⅲ NSCLC. N Engl J Med. 2018; 379(24): 2342-50.
15)
Gray JE, Villegas A, Daniel D, et al. Three-year overall survival with durvalumab after chemoradiotherapy in stage Ⅲ NSCLC-update from PACIFIC. J Thorac Oncol. 2020; 15(2): 288-93.
16)
Hui R, Özgüroğlu M, Villegas A, et al. Patient-reported outcomes with durvalumab after chemoradiotherapy in stage III, unresectable non-small-cell lung cancer(PACIFIC): a randomised, controlled, phase 3 study. Lancet Oncol. 2019; 20(12): 1670-80.
17)
Murakami S, Özgüroğlu M, Villegas A, et al. PACIFIC: A double-blind, placebo-controlled Phase Ⅲ study of durvalumab as consolidation therapy after chemoradiation in patients with locally advanced, unresectable NSCLC(ESMO Asia 2017 Congress, 403O). Ann oncol. 2017; 28(suppl_10). mdx670.
18)
Yuan S, Sun X, Li M, et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage Ⅲ nonsmall cell lung cancer. Am J Clin Oncol. 2007; 30(3): 239-44.
19)
Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage ⅢA or ⅢB non-small-cell lung cancer(RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015; 16(2): 187-99.
20)
Bradley JD, Hu C, Komaki RR, et al. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2020; 38(7): 706-14.
21)
Li R, Yu L, Lin S, et al. Involved field radiotherapy(IFRT)versus elective nodal irradiation(ENI)for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure(ENF). Radiat Oncol. 2016; 11(1): 124.
22)
Schild SE, Pang HH, Fan W, et al. Exploring radiotherapy targeting strategy and dose: a pooled analysis of cooperative group trials of combined modality therapy for stage Ⅲ NSCLC. J Thorac Oncol. 2018; 13(8): 1171-82.
23)
Schild SE, Fan W, Stinchcombe TE, et al. Toxicity related to radiotherapy dose and targeting strategy: a pooled analysis of cooperative group trials of combined modality therapy for locally advanced non-small cell lung cancer. J Thorac Oncol. 2019; 14(2): 298-303.
24)
Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017; 35(1): 56-62.
Reinfuss M, Glinski B, Kowalska T, et al. Radiotherapy for stage Ⅲ, inoperable, asymptomatic small cell lung cancer. Final results of a prospective randomized study(240 patients). Cancer Radiother. 1999; 3(6): 475-9.
2)
Perez CA, Pajak TF, Rubin P, et al. Long-term observations of the patterns of failure in patients with unresectable non-oat cell carcinoma of the lung treated with definitive radiotherapy. Report by the Radiation Therapy Oncology Group. Cancer. 1987; 59(11): 1874-81.
3)
Singer JM, Price P, Dale RG. Radiobiological prediction of normal tissue toxicities and tumour response in the radiotherapy of advanced non-small-cell lung cancer. Br J Cancer. 1998; 78(12): 1629-33.
4)
Cox JD, Azarnia N, Byhardt RW, et al. A randomized phase Ⅰ/Ⅱ trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage Ⅲ non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol. 1990; 8(9): 1543-55.
5)
Ball D, Bishop J, Smith J, et al. A randomised phase Ⅲ study of accelerated or standard fraction radiotherapy with or without concurrent carboplatin in inoperable non-small cell lung cancer: final report of an Australian multi-centre trial. Radiother Oncol. 1999; 52(2): 129-36.
6)
Saunders M, Dische S, Barrett A, et al. Continuous, hyperfractionated, accelerated radiotherapy(CHART)versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomized multicentre trial. CHART Steering committee. Radiother Oncol. 1999; 52(2): 137-48.
7)
Bonner JA, McGinnis WL, Stella PJ, et al. The possible advantage of hyperfractionated thoracic radiotherapy in the treatment of locally advanced nonsmall cell lung carcinoma: results of a North Central Cancer Treatment Group Phase Ⅲ Study. Cancer. 1998; 82(6): 1037-48.
Rusch VW, Giroux DJ, Kraut MJ, et al. Induction chemoradiation and surgical resection for superior sulcus non-small-cell lung carcinomas: long-term results of Southwest Oncology Group Trial 9416(Intergroup Trial 0160). J Clin Oncol. 2007; 25(3): 313-8.
2)
Kunitoh H, Kato H, Tsuboi M, et al. Phase II trial of preoperative chemoradiotherapy followed by surgical resection in patients with superior sulcus non-small-cell lung cancers: report of Japan Clinical Oncology Group trial 9806. J Clin Oncol. 2008; 26(4): 644-9.
3)
Kawaguchi K, Yokoi K, Niwa H, et al. A prospective, multi-institutional phase II study of induction chemoradiotherapy followed by surgery in patients with non-small cell lung cancer involving the chest wall(CJLSG0801). Lung Cancer. 2017; 104: 79-84.
4)
Gomez DR, Cox JD, Roth JA, et al. A prospective phase 2 study of surgery followed by chemotherapy and radiation for superior sulcus tumors. Cancer. 2012; 118(2): 444-51.
Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2010;(5): CD007309.
2)
Baggstrom MQ, Stinchcombe TE, Fried DB, et al. Third-generation chemotherapy agents in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Thorac Oncol. 2007; 2(9): 845-53.
3)
Fujiwara Y, Hotta K, Di Maio M, et al. Time trend in treatment-related deaths of patients with advanced non-small-cell lung cancer enrolled into phase Ⅲ trials of systemic treatment. Ann Oncol. 2011; 22(2): 376-82.
4)
Anderson H, Hopwood P, Stephens RJ, et al. Gemcitabine plus best supportive care(BSC)vs BSC in inoperable non-small cell lung cancer–a randomized trial with quality of life as the primary outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J Cancer. 2000; 83(4): 447-53.
5)
Sederholm C, Hillerdal G, Lamberg K, et al. Phase Ⅲ trial of gemcitabine plus carboplatin versus single-agent gemcitabine in the treatment of locally advanced or metastatic non-small-cell lung cancer: the Swedish Lung Cancer Study Group. J Clin Oncol. 2005; 23(33): 8380-8.
6)
Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009; 361(10): 958-67.
7)
Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014; 311(19): 1998-2006.
Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor(WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010; 11(2): 121-8.
2)
Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010; 362(25): 2380-8.
3)
Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer(OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011; 12(8): 735-42.
4)
Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer(EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012; 13(3): 239-46.
5)
Sequist LV, Yang JC, Yamamoto N, et al. Phase Ⅲ study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013; 31(27): 3327-34.
6)
Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations(LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014; 15(2): 213-22.
7)
Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014; 371(23): 2167-77.
8)
Wu YL, Lu S, Lu Y, et al. Results of PROFILE 1029, a phase Ⅲ comparison of first-line crizotinib versus chemotherapy in East Asian patients with ALK-positive advanced non-small cell lung cancer. J Thorac Oncol. 2018; 13(10): 1539-48.
9)
Yang JC, Sequist LV, Geater SL, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015; 16(7): 830-8.
10)
Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014; 371(21): 1963-71.
11)
Wu YL, Yang JC, Kim DW, et al. Phase Ⅱ study of crizotinib in East Asian patients with ROS1-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018; 36(14): 1405-11.
12)
Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAF (V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016; 17(7): 984-93.
13)
Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017; 18(10): 1307-16.
14)
Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020; 383(10): 931-43.
15)
Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or met-amplified non-small-cell lung cancer. N Engl J Med. 2020; 383(10): 944-57.
16)
Drilon A, Oxnard GR, Tan DSW, et al. Efficacy of Selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med. 2020; 383(9): 813-24.
17)
Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014; 311(19): 1998-2006.
18)
Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009; 361(10): 958-67.
19)
Solomon BJ, Kim DW, Wu YL, et al. Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol. 2018; 36(22): 2251-8.
20)
Inoue A, Kobayashi K, Usui K, et al. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol. 2009; 27(9): 1394-400.
21)
Iwama E, Goto Y, Murakami H, et al. Alectinib for patients with ALK rearrangement-positive non-small cell lung cancer and a poor performance status(Lung Oncology Group in Kyushu 1401). J Thorac Oncol. 2017; 12(7): 1161-6.
22)
Maemondo M, Minegishi Y, Inoue A, et al. First-line gefitinib in patients aged 75 or older with advanced non-small cell lung cancer harboring epidermal growth factor receptor mutations: NEJ 003 study. J Thorac Oncol. 2012; 7(9): 1417-22.
23)
Goto K, Nishio M, Yamamoto N, et al. A prospective, phase Ⅱ, open-label study(JO22903)of first-line erlotinib in Japanese patients with epidermal growth factor receptor(EGFR)mutation-positive advanced non-small-cell lung cancer(NSCLC). Lung Cancer. 2013; 82(1): 109-14.
24)
Yoshioka H, Shimokawa M, Seto T, et al. Final overall survival results of WJTOG3405, a randomized phase Ⅲ trial comparing gefitinib versus cisplatin with docetaxel as the first-line treatment for patients with stage ⅢB/Ⅳ or postoperative recurrent EGFR mutation-positive non-small-cell lung cancer. Ann Oncol. 2019; 30(12): 1978-84.
25)
Inoue A, Kobayashi K, Maemondo M, et al. Updated overall survival results from a randomized phase Ⅲ trial comparing gefitinib with carboplatin-paclitaxel for chemo-naive non-small cell lung cancer with sensitive EGFR gene mutations(NEJ002). Ann Oncol. 2013; 24(1): 54-9.
26)
Inoue A, Yoshida K, Morita S, et al. Characteristics and overall survival of EGFR mutation-positive non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors: a retrospective analysis for 1660 Japanese patients. Jpn J Clin Oncol. 2016; 46(5): 462-7.
27)
Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer(IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019; 7(5): 387-401.
28)
West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer(IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019; 20(7): 924-37.
29)
Lee CK, Man J, Lord S, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 2018; 4(2): 210-6.
30)
Gainor JF, Shaw AT, Sequist LV, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016; 22(18): 4585-93.
Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor(WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010; 11(2): 121-8.
2)
Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer(OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011; 12(8): 735-42.
3)
Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer(EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012; 13(3): 239-46.
4)
Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010; 362(25): 2380-8.
5)
Sequist LV, Yang JC, Yamamoto N, et al. Phase Ⅲ study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013; 31(27): 3327-34.
6)
Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations(LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014; 15(2): 213-22.
7)
Oizumi S, Kobayashi K, Inoue A, et al. Quality of life with gefitinib in patients with EGFR-mutated non-small cell lung cancer: quality of life analysis of North East Japan Study Group 002 Trial. Oncologist. 2012; 17(6): 863-70.
8)
Wu YL, Hirsh V, Sequist LV, et al. Does EGFR mutation type influence patient-reported outcomes in patients with advanced EGFR mutation-positive non-small-cell lung cancer? Analysis of two large, phase Ⅲ studies comparing afatinib with chemotherapy(LUX-Lung 3 and LUX-Lung 6). Patient. 2018; 11(1): 131-41.
9)
Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018; 378(2): 113-25.
10)
Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020; 382(1): 41-50.
11)
Ohe Y, Imamura F, Nogami N, et al. Osimertinib versus standard-of-care EGFR-TKI as first-line treatment for EGFRm advanced NSCLC: FLAURA Japanese subset. Jpn J Clin Oncol. 2019; 49(1): 29-36.
12)
Hosomi Y, Morita S, Sugawara S, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 Study. J Clin Oncol. 2020; 38(2): 115-23.
13)
Noronha V, Patil VM, Joshi A, et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-Mutated Lung Cancer. J Clin Oncol. 2020; 38(2): 124-36.
14)
Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations(JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014; 15(11): 1236-44.
15)
Yamamoto N, Seto T, Nishio M, et al. Erlotinib plus bevacizumab vs erlotinib monotherapy as first-line treatment for advanced EGFR mutation-positive non-squamous non-small-cell lung cancer: survival follow-up results of the randomized JO25567 study. Lung Cancer. 2021; 151: 20-4.
16)
Stinchcombe TE, Jänne PA, Wang X, et al. Effect of erlotinib plus bevacizumab vs erlotinib alone on progression-free survival in patients with advanced EGFR-mutant non-small cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol. 2019; 5(10): 1448-55.
17)
Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer(NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019; 20(5): 625-35.
18)
Maemondo M, Fukuhara T, Saito H, et al. NEJ026: Final overall survival analysis of bevacizumab plus erlotinib treatment for NSCLC patients harboring activating EGFR-mutations. J Clin Oncol. 2020; 38(15 suppl): abstr 9506.
19)
Nakagawa K, Garon EB, Seto T, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer(RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019; 20(12): 1655-69.
20)
Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer(ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017; 18(11): 1454-66.
21)
Mok TS, Cheng Y, Zhou X, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J Clin Oncol. 2018; 36(22): 2244-50.
22)
Nishio M, Kato T, Niho S, et al. Safety and efficacy of first-line dacomitinib in Japanese patients with advanced non-small cell lung cancer. Cancer Sci. 2020; 111(5): 1724-38.
23)
Yang JJ, Zhou Q, Yan HH, et al. A phase Ⅲ randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer. 2017; 116(5): 568-74.
24)
Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer(LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016; 17(5): 577-89.
25)
Inoue A, Kobayashi K, Usui K, et al. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol. 2009; 27(9): 1394-400.
26)
Maemondo M, Minegishi Y, Inoue A, et al. First-line gefitinib in patients aged 75 or older with advanced non-small cell lung cancer harboring epidermal growth factor receptor mutations: NEJ 003 study. J Thorac Oncol. 2012; 7(9): 1417-22.
27)
Prabhash K, Noronha V, Patil V, et al. P1.01-88 PS 2 patients with advanced EGFR Mutant NSCLC: subset analysis of a Phase Ⅲ randomized trial comparing gefitinib to gefitinib with chemotherapy. J Thorac Oncol. 2019; 14(10): suppl. S395.
28)
Kudoh S, Kato H, Nishiwaki Y, et al. Interstitial lung disease in Japanese patients with lung cancer: a cohort and nested case-control study. Am J Respir Crit Care Med. 2008; 177(12): 1348-57.
29)
Ando M, Okamoto I, Yamamoto N, et al. Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol. 2006; 24(16): 2549-56.
30)
Beau-Faller M, Prim N, Ruppert AM, et al. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network. Ann Oncol. 2014; 25(1): 126-31.
31)
Wu JY, Yu CJ, Chang YC, et al. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res. 2011; 17(11): 3812-21.
32)
Yang JC, Sequist LV, Geater SL, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015; 16(7): 830-8.
33)
Cho JH, Lim SH, An HJ, et al. Osimertinib for patients with non-small-cell lung cancer harboring uncommon EGFR mutations: a multicenter, open-label, phase Ⅱ trial(KCSG-LU15-09). J Clin Oncol. 2020; 38 (5): 488-95.
34)
Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012; 13(1): e23-31.
35)
Ramalingam SS, Yang JC, Lee CK, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018; 36(9): 841-9.
36)
Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017; 376(7): 629-40.
37)
Papadimitrakopoulou VA, Mok TS, Han JY, et al. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann Oncol. 2020; 31(11): 1536-44.
38)
Nakashima K, Ozawa Y, Daga H, et al. Osimertinib for patients with poor performance status and EGFR T790M mutation-positive advanced non-small cell lung cancer: a phase II clinical trial. Invest New Drugs. 2020; 38(6): 1854-61.
Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014; 371(23): 2167-77.
2)
Soria JC, Tan DSW, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer(ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017; 389(10072): 917-29.
3)
Wu YL, Lu S, Lu Y, et al. Results of PROFILE 1029, a phase Ⅲ comparison of first-line crizotinib versus chemotherapy in East Asian patients with ALK-positive advanced non-small cell lung cancer. J Thorac Oncol. 2018; 13(10): 1539-48.
4)
Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer(J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017; 390(10089): 29-39.
5)
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017; 377(9): 829-38.
6)
Zhou C, Kim SW, Reungwetwattana T, et al. Alectinib versus crizotinib in untreated Asian patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer(ALESIA): a randomised phase 3 study. Lancet Respir Med. 2019; 7(5): 437-46.
7)
Mok T, Camidge DR, Gadgeel SM, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020; 31(8): 1056-64.
8)
Takiguchi Y, Hida T, Nokihara H, et al. Updated efficacy and safety of the j-alex study comparing alectinib(ALC)with crizotinib(CRZ)in ALK-inhibitor naïve ALK fusion positive non-small cell lung cancer(ALK+NSCLC). J Clin Oncol. 2017; 35(15 suppl 9064).
9)
Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018; 379(21): 2027-39.
10)
Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: Second interim analysis of the phase III ALTA-1L trial. J Clin Oncol. 2020; 38(31): 3592-603.
11)
Shaw AT, Bauer TM, de Marinis F, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med. 2020; 383(21): 2018-29.
12)
Iwama E, Goto Y, Murakami H, et al. Alectinib for patients with ALK rearrangement-positive non-small cell lung cancer and a poor performance status(Lung Oncology Group in Kyushu 1401). J Thorac Oncol. 2017; 12(7): 1161-6.
13)
Iwama E, Goto Y, Murakami H, et al. Survival analysis for patients with ALK rearrangement-positive non-small cell lung cancer and a poor performance status treated with alectinib: updated results of Lung Oncology Group in Kyushu 1401. Oncologist. 2020; 25(4): 306-e618.
14)
Ou SH, Ahn JS, De Petris L, et al. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase Ⅱ global study. J Clin Oncol. 2016; 34(7): 661-8.
15)
Shaw AT, Gandhi L, Gadgeel S, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016; 17(2): 234-42.
16)
Hida T, Nakagawa K, Seto T, et al. Pharmacologic study(JP28927)of alectinib in Japanese patients with ALK+non-small-cell lung cancer with or without prior crizotinib therapy. Cancer Sci. 2016; 107(11): 1642-6.
17)
Novello S, Mazières J, Oh IJ, et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase(ALK)-positive non-small-cell lung cancer: results from the phase Ⅲ ALUR study. Ann Oncol. 2018; 29(6): 1409-16.
18)
Kim DW, Tiseo M, Ahn MJ, et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase Ⅱ trial. J Clin Oncol. 2017; 35(22): 2490-8.
19)
Nishio M, Yoshida T, Kumagai T, et al. Brigatinib in Japanese patients with ALK-positive NSCLC previously treated with alectinib and other tyrosine kinase inhibitors: outcomes of the phase 2 J-ALTA trial. J Thorac Oncol. 2021; 16(3): 452-63.
20)
Stinchcombe TE, Doebele RC, Wang X, et al. Preliminary clinical and molecular analysis results from a single-arm phase 2 trial of brigatinib in patients with disease progression after next-generation ALK tyrosine kinase inhibitors in advanced ALK+ NSCLC. J Thorac Oncol. 2021; 16(1): 156-61.
21)
Lenderking WR, Lin H, Speck RM, et al. Patient-reported outcomes and quality of life in advanced ALK+ non-small-cell lung cancer trial of brigatinib(ALTA). Future Oncol. 2019; 15(24): 2841-55.
22)
Solomon BJ, Besse B, Bauer TM, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018; 19(12): 1654-67.
23)
Seto T, Hayashi H, Satouchi M, et al. Lorlatinib in previously treated anaplastic lymphoma kinase-rearranged non-small cell lung cancer: Japanese subgroup analysis of a global study. Cancer Sci. 2020; 111(10): 3726-38.
24)
Crinò L, Ahn MJ, De Marinis F, et al. Multicenter phase Ⅱ study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol. 2016; 34(24): 2866-73.
25)
Shaw AT, Kim TM, Crinò L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib(ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017; 18(7): 874-86.
26)
Hida T, Seto T, Horinouchi H, et al. Phase Ⅱ study of ceritinib in alectinib-pretreated patients with anaplastic lymphoma kinase-rearranged metastatic non-small-cell lung cancer in Japan: ASCEND-9. Cancer Sci. 2018; 109(9): 2863-72.
Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014; 371(21): 1963-71.
2)
Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer(NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol. 2019; 30(7): 1121-6.
3)
Wu YL, Yang JC, Kim DW, et al. Phase Ⅱ study of crizotinib in East Asian patients with ROS1-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018; 36(14): 1405-11.
4)
Michels S, Massutí B, Schildhaus HU, et al. Safety and efficacy of crizotinib in patients with advanced or metastatic ROS1-rearranged lung cancer(EUCROSS): a european phase Ⅱ clinical trial. J Thorac Oncol. 2019; 14(7): 1266-76.
5)
Landi L, Chiari R, Tiseo M, et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer(METROS): a phase Ⅱ, prospective, multicenter, two-arms trial. Clin Cancer Res. 2019; 25(24): 7312-9.
6)
Moro-Sibilot D, Cozic N, Pérol M, et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase Ⅱ trial. Ann Oncol. 2019; 30(12): 1985-91.
7)
Drilon A, Siena S, Dziadziuszko R, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020; 21(2): 261-70.
Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase Ⅰ trials(ALKA-372-001 and STARTRK-1). Cancer Discov. 2017; 7(4): 400-9.
2)
Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020; 21(2): 271-82.
3)
Paz-Ares L, Doebele RC, Farago AF, et al. Entrectinib in NTRK fusion-positive non-small cell lung cancer(NSCLC): integrated analysis of patients(pts)enrolled in STARTRK-2, STARTRK-1 and ALKA-372-001. Annals of Oncology. 2019; 30(suppl 2): ii48-49.
4)
Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020; 21(4): 531-40.
5)
Lin JJ,Kummer S, Tan DS, et al. Long-term efficacy and safety of larotrectinib in patients with TRK fusion-positive lung cancer. J Clin Oncol. 2021; 39(suppl 15): abstr 9109.
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016; 375(19): 1823-33.
2)
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019; 37(7): 537-46.
3)
Satouchi M, Nosaki K, Takahashi T, et al. First-line pembrolizumab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset. Cancer Sci. 2020; 111(12): 4480-9.(This manuscript has been revised)
4)
Brahmer JR, Rodríguez-Abreu D, Robinson AG, et al. Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC(KEYNOTE-024): a multicentre, international, randomised, open-label phase 3 trial. Lancet Oncol. 2017; 18(12): 1600-9.
5)
Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer(KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019; 393(10183): 1819-30.
6)
Nosaki K, Saka H, Hosomi Y, et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 2019; 135: 188-95.
7)
Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020; 383(14): 1328-39.
8)
Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018; 378(22): 2078-92.
9)
Garassino MC, Gadgeel S, Esteban E, et al. Patient-reported outcomes following pembrolizumab or placebo plus pemetrexed and platinum in patients with previously untreated, metastatic, non-squamous non-small-cell lung cancer(KEYNOTE-189): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020; 21(3): 387-97.
10)
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018; 378(24): 2288-301.
11)
West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer(IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019; 20(7): 924-37.
12)
Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018; 379(21): 2040-51.
13)
Paz-Ares L, Vicente D, Tafreshi A, et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. J Thorac Oncol. 2020; 15(10): 1657-69.
14)
Mazieres J, Kowalski D, Luft A, et al. Health-related quality of life with carboplatin-paclitaxel or nab-paclitaxel with or without pembrolizumab in patients with metastatic squamous non-small-cell lung cancer. J Clin Oncol. 2020; 38(3): 271-80.
15)
Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer(CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021; 22(2): 198-211. Epub 2021 Jan 18.
16)
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019; 381(21): 2020-31.
17)
Middleton G, Brock K, Savage J, et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2(PePS2): a single arm, phase 2 trial. Lancet Respir Med. 2020; 8(9): 895-904.
Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2010 May 12;(5): CD007309.
2)
Baggstrom MQ, Stinchcombe TE, Fried DB, et al. Third-generation chemotherapy agents in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Thorac Oncol. 2007; 2(9): 845-53.
3)
Ohe Y, Ohashi Y, Kubota K, et al. Randomized phase Ⅲ study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol. 2007; 18(2): 317-23.
4)
Scagliotti GV, Parikh P, von Pawel J, et al. Phase Ⅲ study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008; 26(21): 3543-51.
5)
Grönberg BH, Bremnes RM, Flötten O, et al. Phase Ⅲ study by the Norwegian lung cancer study group: pemetrexed plus carboplatin compared with gemcitabine plus carboplatin as first-line chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2009; 27(19): 3217-24.
6)
Rodrigues-Pereira J, Kim JH, Magallanes M, et al. A randomized phase 3 trial comparing pemetrexed/carboplatin and docetaxel/carboplatin as first-line treatment for advanced, nonsquamous non-small cell lung cancer. J Thorac Oncol. 2011; 6(11): 1907-14.
7)
Zinner RG, Obasaju CK, Spigel DR, et al. PRONOUNCE: randomized, open-label, phase Ⅲ study of first-line pemetrexed+carboplatin followed by maintenance pemetrexed versus paclitaxel+carboplatin+bevacizumab followed by maintenance bevacizumab in patients ith advanced nonsquamous non-small-cell lung cancer. J Thorac Oncol. 2015; 10(1): 134-42.
8)
Patel JD, Socinski MA, Garon EB, et al. PointBreak: a randomized phase Ⅲ study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage ⅢB or Ⅳ nonsquamous non-small-cell lung cancer. J Clin Oncol. 2013; 31(34): 4349-57.
9)
Shukuya T, Yamanaka T, Seto T, et al. Nedaplatin plus docetaxel versus cisplatin plus docetaxel for advanced or relapsed squamous cell carcinoma of the lung(WJOG5208L): a randomised, open-label, phase 3 trial. Lancet Oncol. 2015; 16(16): 1630-8.
10)
Okamoto I, Yoshioka H, Morita S, et al. Phase Ⅲ trial comparing oral S-1 plus carboplatin with paclitaxel plus carboplatin in chemotherapy-naive patients with advanced non-small-cell lung cancer: results of a west Japan oncology group study. J Clin Oncol. 2010; 28(36): 5240-6.
11)
Kubota K, Sakai H, Katakami N, et al. A randomized phase Ⅲ trial of oral S-1 plus cisplatin versus docetaxel plus cisplatin in Japanese patients with advanced non-small-cell lung cancer: TCOG0701 CATS trial. Ann Oncol. 2015; 26(7): 1401-8.
12)
Socinski MA, Bondarenko I, Karaseva NA, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase Ⅲ trial. J Clin Oncol. 2012; 30(17): 2055-62.
13)
Maione P, Perrone F, Gallo C, et al. Pretreatment quality of life and functional status assessment significantly predict survival of elderly patients with advanced non-small-cell lung cancer receiving chemotherapy: a prognostic analysis of the multicenter Italian lung cancer in the elderly study. J Clin Oncol. 2005; 23(28): 6865-72.
14)
Hesketh PJ, Lilenbaum RC, Chansky K, et al. Chemotherapy in patients>or=80 with advanced non-small cell lung cancer: combined results from SWOG 0027 and LUN 6. J Thorac Oncol. 2007; 2(6): 494-8.
15)
Quoix E, Zalcman G, Oster JP, et al. Carboplatin and weekly paclitaxel doublet chemotherapy compared with monotherapy in elderly patients with advanced non-small-cell lung cancer: IFCT-0501 randomised, phase 3 trial. Lancet. 2011; 378(9796): 1079-88.
16)
Okamoto I, Nokihara H, Nomura S, et al. Comparison of carboplatin plus pemetrexed followed by maintenance pemetrexed with docetaxel monotherapy in elderly patients with advanced nonsquamous non-small cell lung cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2020; 6(5): e196828.
17)
Hamamoto Y, Kogure Y, Kada A, et al. A randomized phase III study comparing carboplatin with nab-paclitaxel versus docetaxel for elderly patients with squamous-cell lung cancer: Capital study. J Clin Oncol. 2021; 39(15 suppl): abstr9031.
18)
The Elderly Lung Cancer Vinorelbine Italian Study Group. Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small-cell lung cancer. J Natl Cancer Inst. 1999; 91(1): 66-72.
19)
Gridelli C, Perrone F, Gallo C, et al. Chemotherapy for elderly patients with advanced non-small-cell lung cancer: the Multicenter Italian Lung Cancer in the Elderly Study(MILES)phase Ⅲ randomized trial. J Natl Cancer Inst. 2003; 95(5): 362-72.
20)
Kudoh S, Takeda K, Nakagawa K, et al. Phase Ⅲ study of docetaxel compared with vinorelbine in elderly patients with advanced non-small-cell lung cancer: results of the West Japan Thoracic Oncology Group Trial(WJTOG 9904). J Clin Oncol. 2006; 24(22): 3657-63.
21)
Gridelli C, Ardizzoni A, Le Chevalier T, et al. Treatment of advanced non-small-cell lung cancer patients with ECOG performance status 2: results of an European Experts Panel. Ann Oncol. 2004; 15(3): 419-26.
22)
Lilenbaum RC, Herndon JE 2nd, List MA, et al. Single-agent versus combination chemotherapy in advanced non-small-cell lung cancer: the cancer and leukemia group B(study 9730). J Clin Oncol. 2005; 23(1): 190-6.
23)
Langer C, Li S, Schiller J, et al. Randomized phase Ⅱ trial of paclitaxel plus carboplatin or gemcitabine plus cisplatin in Eastern Cooperative Oncology Group performance status 2 non-small-cell lung cancer patients: ECOG 1599. J Clin Oncol. 2007; 25(4): 418-23.
24)
Kosmidis PA, Dimopoulos MA, Syrigos K, et al. Gemcitabine versus gemcitabine-carboplatin for patients with advanced non-small cell lung cancer and a performance status of 2: a prospective randomized phase Ⅱ study of the Hellenic Cooperative Oncology Group. J Thorac Oncol. 2007; 2(2): 135-40.
25)
Zukin M, Barrios CH, Pereira JR, et al. Randomized phase Ⅲ trial of single-agent pemetrexed versus carboplatin and pemetrexed in patients with advanced non-small-cell lung cancer and Eastern Cooperative Oncology Group performance status of 2. J Clin Oncol. 2013; 31(23): 2849-53.
26)
Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med. 2018; 378(22): 2078-92.
27)
Garassino MC, Gadgeel S, Esteban E, et al. Patient-reported outcomes following pembrolizumab or placebo plus pemetrexed and platinum in patients with previously untreated, metastatic, non-squamous non-small-cell lung cancer(KEYNOTE-189): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020; 21(3): 387-97.
28)
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018; 378(24): 2288-301.
29)
West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer(IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019; 20(7): 924-37.
30)
Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018; 379(21): 2040-51.
31)
Paz-Ares L, Vicente D, Tafreshi A, et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. J Thorac Oncol. 2020; 15(10): 1657-69.
32)
Mazieres J, Kowalski D, Luft A, et al. Health-related quality of life with carboplatin-paclitaxel or nab-paclitaxel with or without pembrolizumab in patients with metastatic squamous non-small-cell lung cancer. J Clin Oncol. 2020; 38(3): 271-80.
33)
Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer(CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021; 22(2): 198-211.
34)
Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer(KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019; 393(10183): 1819-30.
35)
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019; 381(21): 2020-31.
36)
von Plessen C, Bergman B, Andresen O, et al. Palliative chemotherapy beyond three courses conveys no survival or consistent quality-of-life benefits in advanced non-small-cell lung cancer. Br J Cancer. 2006; 95(8): 966-73.
37)
Park JO, Kim SW, Ahn JS, et al. Phase Ⅲ trial of two versus four additional cycles in patients who are nonprogressive after two cycles of platinum-based chemotherapy in non small-cell lung cancer. J Clin Oncol. 2007; 25 (33): 5233-9.
38)
Rossi A, Chiodini P, Sun JM, et al. Six versus fewer planned cycles of first-line platinum-based chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2014; 15(11): 1254-62.
39)
Lima AB, Macedo LT, Sasse AD. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2011; 6(8): e22681.
40)
Soria JC, Mauguen A, Reck M, et al. Systematic review and meta-analysis of randomised, phase Ⅱ/Ⅲ trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol. 2013; 24(1): 20-30.
41)
Sandler AB, Schiller JH, Gray R, et al. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with Carboplatin and Paclitaxel plus bevacizumab. J Clin Oncol. 2009; 27(9): 1405-12.
42)
Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006; 355(24): 2542-50.
43)
Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase Ⅲ trial(AVAiL). Ann Oncol. 2010; 21(9): 1804-9.
44)
Niho S, Kunitoh H, Nokihara H, et al. Randomized phase Ⅱ study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced non-squamous non-small-cell lung cancer. Lung Cancer. 2012; 76(3): 362-7.
45)
Zhou C, Wu YL, Chen G, et al. BEYOND: A randomized, double-blind, placebo-controlled, multicenter, phase Ⅲ study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015; 33(19): 2197-204.
46)
Ramalingam SS, Dahlberg SE, Langer CJ, et al. Outcomes for elderly, advanced-stage non small-cell lung cancer patients treated with bevacizumab in combination with carboplatin and paclitaxel: analysis of Eastern Cooperative Oncology Group Trial 4599. J Clin Oncol. 2008; 26(1): 60-5.
47)
Langer CJ, Socinski MA, Patel JD, et al. Isolating the role of bevacizumab in elderly patients with previously untreated nonsquamous non-small cell lung cancer: secondary analyses of the ECOG 4599 and PointBreak trials. Am J Clin Oncol. 2016; 39(5): 441-7.
48)
Wozniak AJ, Kosty MP, Jahanzeb M, et al. Clinical outcomes in elderly patients with advanced non-small cell lung cancer: results from ARIES, a bevacizumab observational cohort study. Clin Oncol(R Coll Radiol). 2015; 27 (4): 187-96.
49)
Laskin J, Crino L, Felip E, et al. Safety and efficacy of first-line bevacizumab plus chemotherapy in elderly patients with advanced or recurrent nonsquamous non-small cell lung cancer: safety of avastin in lung trial(MO19390). J Thorac Oncol. 2012; 7(1): 203-11.
50)
Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase Ⅱ trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004; 22(11): 2184-91.
51)
Thatcher N, Hirsch FR, Luft AV, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage Ⅳ squamous non-small-cell lung cancer(SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2015; 16(7): 763-74.
52)
Watanabe S, Yoshioka H, Sakai H, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line treatment for stage Ⅳ squamous non-small cell lung cancer: A phase 1b and randomized, open-label, multicenter, phase 2 trial in Japan. Lung Cancer. 2019; 129: 55-62.
53)
Paz-Ares LG, de Marinis F, Dediu M, et al. PARAMOUNT: Final overall survival results of the phase Ⅲ study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J Clin Oncol. 2013; 31(23): 2895-902.
54)
Barlesi F, Scherpereel A, Gorbunova V, et al. Maintenance bevacizumab-pemetrexed after first-line cisplatin-pemetrexed-bevacizumab for advanced nonsquamous nonsmall-cell lung cancer: updated survival analysis of the AVAPERL(MO22089)randomized phase Ⅲ trial. Ann Oncol. 2014; 25(5): 1044-52.
55)
Seto T, Azuma K, Yamanaka T, et al. Randomized phase III study of continuation maintenance bevacizumab with or without pemetrexed in advanced nonsquamous non-small-cell lung cancer: COMPASS(WJOG5610L). J Clin Oncol. 2020; 38(8): 793-803.
56)
Lee SM, Khan I, Upadhyay S, et al. First-line erlotinib in patients with advanced non-small-cell lung cancer unsuitable for chemotherapy(TOPICAL): a double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2012; 13(11): 1161-70.
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015; 373(2): 123-35.
2)
Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015; 373(17): 1627-39.
3)
Wu YL, Lu S, Cheng Y, et al. Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase Ⅲ clinical trial. J Thorac Oncol. 2019; 14(5): 867-75.
4)
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer(OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017; 389(10066): 255-65.
5)
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer(KEYNOTE-010): a randomised controlled trial. Lancet. 2016; 387(10027): 1540-50.
6)
Reck M, Brahmer J, Bennett B, et al. Evaluation of health-related quality of life and symptoms in patients with advanced non-squamous non-small cell lung cancer treated with nivolumab or docetaxel in CheckMate 057. Eur J Cancer. 2018; 102: 23-30.
7)
Antonia SJ, Borghaei H, Ramalingam SS, et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. Lancet Oncol. 2019; 20(10): 1395-408.
8)
Barlesi F, Garon EB, Kim DW, et al. Health-related quality of life in KEYNOTE-010: a phase Ⅱ/Ⅲ study of pembrolizumab versus docetaxel in patients with previously treated advanced, programmed death ligand 1-expressing NSCLC. J Thorac Oncol. 2019; 14(5): 793-801.
9)
Fehrenbacher L, Spira A, Ballinger M, et al; POPLAR Study Group. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer(POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016; 387(10030): 1837-46.
10)
Bordoni R, Ciardiello F, von Pawel J, et al. Patient-reported outcomes in OAK: a phase Ⅲ study of atezolizumab versus docetaxel in advanced non-small-cell lung cancer. Clin Lung Cancer. 2018; 19(5): 441-9.
11)
Spigel DR, McCleod M, Jotte RM, et al. Safety, efficacy, and patient-reported health-related quality of life and symptom burden with nivolumab in patients with advanced non-small cell lung cancer, including patients aged 70 years or older or with poor performance status(CheckMate 153). J Thorac Oncol. 2019; 14(9): 1628-39.
12)
Middleton G, Brock K, Savage J, et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2(PePS2): a single arm, phase 2 trial. Lancet Respir Med. 2020; 8(9): 895-904.
13)
Felip E, Ardizzoni A, Ciuleanu T, et al. CheckMate 171: A phase 2 trial of nivolumab in patients with previously treated advanced squamous non-small cell lung cancer, including ECOG PS 2 and elderly populations. Eur J Cancer. 2020; 127: 160-72.
14)
Fossella FV, DeVore R, Kerr RN, et al. Randomized phase Ⅲ trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol. 2000; 18(12): 2354-62.
15)
Shepherd FA, Dancey J, Ramlau R, et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol. 2000; 18(10): 2095-103.
16)
Mukohara T, Takeda K, Miyazaki M, et al. Japanese experience with second-line chemotherapy with low-dose(60 mg/M2)docetaxel in patients with advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2001; 48(5): 356-60.
17)
Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase Ⅲ trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004; 22(9): 1589-97.
18)
Scagliotti G, Hanna N, Fossella F, et al. The differential efficacy of pemetrexed according to NSCLC histology: a review of two Phase Ⅲ studies. Oncologist. 2009; 14(3): 253-63.
19)
Nokihara H, Lu S, Mok TSK, et al. Randomized controlled trial of S-1 versus docetaxel in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy(East Asia S-1 Trial in Lung Cancer). Ann Oncol. 2017; 28(11): 2698-706.
20)
Garon EB, Ciuleanu TE, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage Ⅳ non-small-cell lung cancer after disease progression on platinum-based therapy(REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014; 384(9944): 665-73.
21)
Yoh K, Hosomi Y, Kasahara K, et al. A randomized, double-blind, phase Ⅱ study of ramucirumab plus docetaxel vs placebo plus docetaxel in Japanese patients with stage Ⅳ non-small cell lung cancer after disease progression on platinum-based therapy. Lung Cancer. 2016; 99: 186-93.